
FlexHTTP: An Intelligent and Scalable HTTP Version
Selection System

Mengying Zhou1,2, Zheng Li1,2, Shihan Lin1,2, Xin Wang1,2, Yang Chen1,2
1School of Computer Science, Fudan University, China

2Shanghai Key Lab of Intelligent Information Processing, Fudan University, China
{myzhou19,zli20,shlin15,xinw,chenyang}@fudan.edu.cn

ABSTRACT
HTTP has been the primary protocol for web data transmis-
sion for decades. Since the late 1990s, HTTP/1.1 has been
widely used. Recently, both HTTP/2 and HTTP/3 have been
proposed to achieve a better experience on web browsing.
However, it is still unclear which of them performs better in
different scenarios. In this paper, we first leverage the con-
trollable experimental environment of the Emulab testbed
to conduct a series of measurements and find that under dif-
ferent network conditions and web page structures, neither
HTTP/2 nor HTTP/3 can always perform better. Motivated
by this finding, we propose FlexHTTP, an intelligent and scal-
able HTTP version selection system. FlexHTTP embeds a
supervised machine learning-based classifier to select the ap-
propriate HTTP version according to network conditions and
web page structures. FlexHTTP adopts a set of distributed
agent servers to ensure scalability and keep the classifier
up-to-date under network dynamics. We implement a proof-
of-concept prototype of FlexHTTP on the Emulab testbed.
Experiments show that FlexHTTP achieves a reduction of
Speed Index by up to 600ms.

CCS CONCEPTS
•Networks→Application layer protocols;Networkman-
agement; In-network processing; • Computing methodolo-
gies → Machine learning.

KEYWORDS
QUIC, web data transmission, HTTP/3, HTTP/2, HTTP ver-
sion selection, machine learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMLSys ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9254-9/22/04. . . $15.00
https://doi.org/10.1145/3517207.3526972

ACM Reference Format:
Mengying Zhou1,2, Zheng Li1,2, Shihan Lin1,2, Xin Wang1,2, Yang
Chen1,2. 2022. FlexHTTP: An Intelligent and Scalable HTTP Ver-
sion Selection System. In 2nd European Workshop on Machine Learn-
ing and Systems (EuroMLSys ’22), April 5–8, 2022, RENNES, France.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3517207.
3526972

1 INTRODUCTION
Web browsing is one of the most important applications
for users to access information and services on the Internet.
Therefore, the speed of web page loading is critical to the
quality of service (QoS). Since the 1990s, HTTP has acted
as the foundation of data communication on web browsing,
and the version HTTP/1.1 (H1.1) has become the dominant
version of HTTP.

With the development of the Internet and the popular-
ity of mobile devices, H1.1 has hardly satisfied the users’
higher demands for speed and stability. As a result, more
advanced network protocols and architectures are proposed.
HTTP/2 (H2) [1] is a milestone that brings many optimiza-
tions, such as multiplexing, header compression, and server
push. H2 enhances H1.1 and makes the data transmission
more efficient. Same as in H1.1, H2 also chooses TCP as the
transport layer protocol. HTTP/3 (H3) [2] is the successor
to the H2 proposal. H3 is also known as “HTTP-over-QUIC”
since it uses the QUIC protocol [16, 20] for data transmission.
QUIC improves the QoS of HTTP by reducing connection
and transmission delays. The 0-RTT handshake function
provides a fast connection establishment. Meanwhile, the
feature of multiple streams avoids the unnecessary delay
caused by the head-of-line (HoL) blocking problem in TCP.
Although both H2 and H3 are promising, which version

would achieve better performance under different situations
is still being explored. To study this essential problem, we
start with a series of comparative measurements for H2 and
H3 using the Emulab testbed. We find that both network con-
ditions and web page structures will impact the comparison
of two HTTP versions’ performance. From the perspective
of network conditions, we can see that H3 mainly displays
advantages over H2 in poor network conditions with high
latency (> 150𝑚𝑠) and high packet loss rate (> 1.5%). In

https://doi.org/10.1145/3517207.3526972
https://doi.org/10.1145/3517207.3526972
https://doi.org/10.1145/3517207.3526972

EuroMLSys ’22, April 5–8, 2022, RENNES, France Zhou et al.

contrast, H2 shows better performance under good network
conditions. From the perspective of web page structures,
more files and larger page size can help H3 be superior to H2.
In short, neither H2 nor H3 can always obtain a better per-
formance, and a flexible HTTP version selection in different
situations is desired.

Motivated by the above findings, we design an intelligent
and scalable HTTP version selection system named Flex-
HTTP. FlexHTTP embeds a supervised machine learning-
based classifier to determine the optimal HTTP version by
referring to the network conditions and web page structures.
To obtain the network-related features, we deploy a series
of agent servers to represent real-time network conditions
between clients and different sets of web servers. The design
of agent servers controls the measurement traffic volume at
a moderate level, which guarantees the scalability of Flex-
HTTP. Moreover, FlexHTTP adopts an update mechanism
for the classifier to ensure that it is up-to-date. Finally, We
build a proof-of-concept implementation of FlexHTTP and
deploy it on the Emulab testbed. The preliminary evalua-
tion demonstrates the effectiveness of FlexHTTP in HTTP
version selection.

Our main contributions are summarized as follows:

• According to our extensive studies based on Emulab,
we find that both network conditions and web page
structures are relevant to the performance comparison
of H2 and H3. It is vital to select the suitable HTTP
version in different scenarios.

• We design FlexHTTP, a machine learning-based in-
telligent and scalable HTTP version selection system,
making use of network conditions and web page struc-
tures. The distributed agent servers and update mecha-
nism ensure the information timeliness and scalability
of FlexHTTP.

• Weuse the Emulab testbed to evaluate the performance
of a proof-of-concept implementation of FlexHTTP.
Our evaluation demonstrates that FlexHTTP is capable
of choosing the appropriate HTTP version, which can
reduce the Speed Index value by up to 600ms.

2 MOTIVATING MEASUREMENT
H2 and H3 are both advanced HTTP versions proposed to
replace the widely-used H1.1. However, they enhance HTTP
from different aspects, and each of them has its advantages
and shortcomings. One key difference between H2 and H3
is the adopted transport layer network protocol. H2 chooses
TCP while H3 uses QUIC, which is a UDP-based protocol.

Previous studies [17, 39] have demonstrated the perfor-
mance difference between TCP and QUIC in some specified
network conditions at the transport layer. [33, 38] have tried
to compare H2 and H3 by visiting a set of selected Internet

websites from a fixed network location. These studies pro-
vided a good start for comparing H2 and H3 “in the wild”. Un-
fortunately, the network parameters of the end-to-end paths
are not configurable. Thus, we cannot have a comprehensive
view of the relationship between network parameters and
the performance comparison.

Therefore, given the complexity and dynamics of the net-
work conditions and the impact of application layer informa-
tion (e.g., web pages structure), it is still unclear that under
what situation H3 would perform better than H2, and vice
versa. In this section, we introduce a controllable measure-
ment to systematically study the performance difference
between H2 and H3 in different situations.

2.1 Measurement Setup and Metric
We use Emulab [13], a representative network emulation
testbed to emulate a series of controllable network condi-
tions. To implement the web server, we choose Caddy [14],
an open-source web server software supporting both H2 and
H3. H2 enables TLS 1.2, and H3 adopts TLS 1.3. The con-
gestion control algorithms for H2 and H3 are CUBIC [28]
and NewReno [12], respectively. Caddy implements H3 with
quic-go [6], which has been constantly developed follow-
ing IETF drafts. In our study, Caddy-based web server uses
IETF QUIC draft-29. H3 combines the handshake and TLS
exchange process in one round trip. Therefore, once the
client and server have reserved the communication key in
the previous connection, they can enable the 0-RTT function.
This key is known as the early data key [16]. To measure
the performance of H3 with the 0-RTT function, we first
request the server for a blank page to ensure the existence
of the early data key. Then the 0-RTT connections can be
established in the subsequent requests. We crawl the front
pages of Alexa top 250 sites, and use the Caddy server to host
these pages. To avoid the uncertainty from uncontrollable
outer-domain URLs, we use dnsmasq [19] to intercept and
discard all outer-domain requests. All machines used in our
study belong to the pc3000 type [7] with CentOS 7, a single
core 3GHz processor, and 2GB of RAM.

Speed Index (SI) [10, 27, 38] is a metric that indicates how
quickly a page is loaded and visibly rendered. The smaller
the SI value is, the faster the user can view the web page.
We use the SI ratio, i.e., 𝑅𝑆𝐼 = 𝑆𝐼𝐻2

𝑆𝐼𝐻3
to study the performance

difference between the two HTTP versions. When 𝑅𝑆𝐼 > 1,
we conclude that H3 performs better than H2. In contrast,
if 𝑅𝑆𝐼 < 1, H2 would have a better performance than H3.
We use Chrome (version 96.0.4664.93, released in December
2021) as the client browser and use Lighthouse [9] to record
the SI values. Considering the possible network fluctuation,
we browse each page 10 times and take the median value as
the final measurement value.

FlexHTTP: An Intelligent and Scalable HTTP Version Selection System EuroMLSys ’22, April 5–8, 2022, RENNES, France

0.01 0.05 0.1 0.5 1.0 1.5 2.0 2.5 3.0

Loss Rate (%)

2
0

3
0

5
0

8
0

1
2
0

1
5
0

2
0
0

2
5
0

3
0
0

5
0
0

R
T

T
 (

m
s)

0.8

0.9

1.0

1.1

1.2

Figure 1: 𝑅𝑆𝐼 with different RTT values and packet loss rates.
𝑅𝑆𝐼 is the ratio of the SI values of H2 to H3. Red color indi-
cates H3 outperforms H2 and blue color indicates that H2
outperforms H3.

2.2 Measurement Results and Findings
Impact of NetworkCondition. Emulab provides a control-
lable experimental environment to define network topolo-
gies, network parameters, machine configurations, etc. We
evaluate 100 network conditions on Emulab with two key
network parameters of RTT and packet loss rate. The net-
work capacity of each link is configured as 10Mbps. The
results shown in Fig. 1 exhibit some motivating insights. We
find that most of the 𝑅𝑆𝐼 under poor network conditions are
higher than 1. This means that H3 displays advantages (me-
dian values 1076ms) over H2 in network conditions with high
latency (> 150𝑚𝑠) and high packet loss rate (> 1.5%). In con-
trast, H2 shows better performance (median values 467ms)
in good network conditions with low latency (< 150𝑚𝑠) and
low packet loss rate (< 1.5%). These advantages come from
H3’s better congestion control mechanism to reduce retrans-
missions, making it more suitable for networks with high
loss rates and high latency [27].
Impact of Web Page Structure. Further, we study the im-
pact of the structure of web pages, which is also an important
factor for web-based applications. In particular, we focus on
the numbers of files and the page size [17, 27] to study the
performance difference of the two HTTP versions. We select
two typical network conditions, i.e., “good” (RTT=30ms, loss
rate=0.01%, capacity=25Mbps) and “poor” (RTT=500ms, loss
rate=1.00%, capacity=1Mbps).
We still use 𝑅𝑆𝐼 to display the performance comparison

between H2 and H3. In a good network condition, Fig. 2(a)
demonstrates that H2 performs better than H3 when visiting
the pages with a small number of large files (Region 1 and
Region 3 in Fig. 2(a)), but this performance gap between the
two HTTP versions is reduced when the number of files in
a page becomes larger (Region 2 and Region 4 in Fig. 2(a)).
This phenomenon is due to QUIC’s multiplexing feature
that solves the HoL blocking problem [27]. This enables H3
to reduce unnecessary blocking delays when visiting the

0 10 20 30 40 50

of Files

0

250

500

750

1000

1250

1500

1750

2000

P
ag

e
S

iz
e(

K
B

)

Region 1

Region 3

Region 2

Region 4

(a) Good Network: RTT=30ms, loss
rate=0.01%, capacity=25Mbps

0 10 20 30 40 50

of Files

0

250

500

750

1000

1250

1500

1750

2000

P
ag

e
S

iz
e(

K
B

)

Region 1

Region 3

Region 2

Region 4
0

10

20

30

40

(b) Poor Network: RTT=500ms, loss
rate=1.00%, capacity=1Mbps

Figure 2: The impact of number of files and page size on 𝑅𝑆𝐼 ,
the ratio of the SI values of H2 to H3.

pages with a large number of files. While in a poor network
condition, H3 exhibits a clear advantage over H2. Even when
visiting the pages with a small number of large files (Region 1
in Fig. 2(b)), H3 performs better than H2 in some cases.

2.3 Towards a Flexible HTTP Version
Selection

Overall, both network conditions and web page structures
would impact the performance comparison between H2 and
H3. It is evident that a fixed HTTP version cannot always
obtain the best transmission performance. A flexible selec-
tion of the appropriate HTTP version can achieve better data
transmission efficiency in different scenarios.
There are literature related to the selection of network

protocols [35, 39], buffer sizes [31], CDN servers [30, 41], and
routing paths [21, 36] according to different situations and
user demands. Inspired by previous work and the above find-
ings, we design and implement an intelligent and scalable
HTTP version selection system, called FlexHTTP. FlexHTTP
empowers a machine learning-based classifier to determine
the better HTTP version by referring to the network condi-
tions and web structure features. With the help of FlexHTTP,
the SI value could be reduced, and the user experience could
be enhanced.

3 FLEXHTTP DESIGN
In this section, we present the design of FlexHTTP. First, we
list the design principles and practical challenges for build-
ing such an intelligent and scalable HTTP version selection
system (Section 3.1). Subsequently, with a careful considera-
tion of these principles and challenges, we show the overall
architecture of FlexHTTP (Section 3.2). Later, We introduce
the three key components of FlexHTTP, i.e., agent servers at
strategic network locations (Section 3.3), HTTP version selec-
tor at the client-side (Section 3.4), and classifier updater at the
client-side (Section 3.5). The source code of FlexHTTP could
be accessed via https://github.com/mengyingzhou/flexhttp.

https://github.com/mengyingzhou/flexhttp

EuroMLSys ’22, April 5–8, 2022, RENNES, France Zhou et al.

Cache

Record Traces

Local
Re-train Local

Classifier
Update

HTTP Transmission

Extractor Local
Trace Pool

𝑆𝑒𝑟𝑣𝑒𝑟!
HTTP/2

HTTP/3

Measurement of
Network Conditions

Classifier Updater

HTTPVersion Selector

Internet

Region 1
Region 2

Region n…

Protocol
Select

Global
Trace Pool

Agent
Server

Global
Classifier

Train

𝐶𝑙𝑖𝑒𝑛𝑡

Trace Entry
Net.
Feat.

Web
Feat.

HTTP
Version

SI
value

Figure 3: Overall architecture of FlexHTTP

3.1 Design Principles and Practical
Challenges

Inspired by our findings in Section 2, building such an HTTP
version selection system is a promising way to improve the
user experience. FlexHTTP would extract a series of features
from network conditions and web page structures, and the
corresponding label representing the HTTP version that
performs better between H2 and H3. Based on the above
features and labels, FlexHTTP adopts a supervised machine
learning-based classifier to determine whether H2 or H3
can achieve a more efficient data delivery. In addition, when
deploying FlexHTTP in practical scenarios, we aim to address
the following two main design challenges:
C1:Massive number of client-server pairs.As aforemen-
tioned, we need to extract network condition and page struc-
tures information as features for the machine learning-based
classifier to make HTTP version selections. However, given
the huge amount of clients and web servers, the possible
number of client-server pairs and corresponding features
would be tremendous. Real-time network measurements and
web page structure features will not only delay the procedure
of HTTP version selection, but also introduce a significant
amount of measurement traffic. Some level of aggregation is
needed to keep the overall measurement traffic volume at a
modest level.
C2: Outdated classifier over time. The network condi-
tions are evolving over time. Therefore, an immutable classi-
fier might be out-of-date after a certain period. Our classifier
updating scheme should meet the following two require-
ments: (1) It needs to ensure both generality and timeliness
of classifier; (2) It should not introduce too much overhead
when updating the classifier.

3.2 Overview of FlexHTTP
As we discussed in Section 3.1, the two key challenges hinder
the design of the system. Here, we show the architecture
of FlexHTTP in Fig. 3 with three key components: a set of
agent servers in different regions, an HTTP version selector
component, and a classifier updater component. The three
components work collaboratively to address the aforemen-
tioned challenges.
S1: Deploying agent servers as representatives to re-
duce measurements. Agent servers are a group of auxil-
iary servers at strategic network locations to represent the
nearby web servers. For example, we can place agent servers
on data centers of public clouds where many online web
servers are deployed [25]. Then, the network conditions be-
tween the client and these web servers are similar to those be-
tween the client and the agent server. A representative agent
server can cover a group of nearby web servers. Therefore,
the measurement overhead of tracking the network condi-
tions between the massive number of client-server pairs can
be reduced to an acceptable volume of measurements with
agent servers, which ensures the scalability of FlexHTTP.
S2: Updating the classifier with a hybrid global-local
mechanism. The classifier will be outdated over time. Flex-
HTTP keeps classifiers up-to-date with considering global
and local information. Each agent server provides a global
classifier for the client to download. The global classifier is
constructed based on the global trace pool. The global trace
pool is aimed to aggregate the information of different client-
server pairs and web pages worldwide and is managed by
different agent servers in a distributed method. Moreover,
FlexHTTP allows a client to improve the classifier locally
based on the local situation. A local trace pool is introduced
to further fine-tune the classifier. Therefore, the classifier has
not only considered the global information but also taken
the particular client’s characteristics into account.

3.3 Agent Servers
The set of agent servers is a key component that supports the
operation of FlexHTTP. It has two essential responsibilities.
The first is to provide real-time network conditions between
the client and the corresponding region. The second is to
jointly maintain the global trace pool in a distributed way.
Based on this global trace pool, each agent server can build
a global classifier for HTTP version selection.

3.3.1 Aggregative Network Condition Measurement.
It is a heavy traffic overhead to obtain the network condi-
tions between the client and numerous servers, since users
browse a wide range of web services. To solve this prob-
lem, we deploy an agent server to represent web servers in
the same region. Here a region denotes a geographic zone,
where servers within this zone can reach each other with

FlexHTTP: An Intelligent and Scalable HTTP Version Selection System EuroMLSys ’22, April 5–8, 2022, RENNES, France

small latency [37]. We believe that this agent server would
achieve a reasonable approximation to represent those web
servers [4, 15]. In this way, the client only needs to mea-
sure the network conditions between itself and agent servers
without generating redundant traffic to various servers. We
propose to deploy agent servers close to various major data
centers at different strategic network locations to represent
more web servers.

3.3.2 Global Trace Pool and Classifier. The global trace
pool aims to 1) collect trace entries under different network
conditions and page structures, and 2) integrate the collected
information to build a global classifier. Here a trace entry
records the information when browsing, including the net-
work condition and web page structures, the HTTP version
used, and the corresponding SI value. Please note that the
trace entries are anonymized. No personal information will
be collected.
Besides the information in trace entry, the classifier con-

struction also needs the ground-truth labels representing
HTTP version selection, that is, under the same specific net-
work condition and web page structures, which of H2 or H3
performs better. FlexHTTP creates the ground-truth labels
for trace entries in the global trace pool as follows. (1) We
group trace entries into clusters using the k-means clustering
algorithm [22]. Accordingly, entries with similar network
conditions and web page structures will be categorized into
the same cluster. (2) For each cluster, we compare the median
SI values of H2 and H3, and then calculate the ground-truth
label, that is, which HTTP version achieves a smaller median
SI value. Entries in the cluster share the same label, which
is prepared for the re-training of the local classifier on the
client-side.
Apart from the global trace pool, each client also main-

tains a local trace pool to collect the individual user’s trace
entries. Each client will periodically upload the local trace
entries to its nearby agent servers to enrich the coverage of
the global trace pool. In return, the always-up-to-date global
trace pool would serve clients worldwide. A global classi-
fier will be trained using the labelled trace entries from the
global trace pool and available for clients to download. For
newly joined clients, the global classifier can provide enough
knowledge to make HTTP version selection. In particular,
with the hybrid global-local re-training mechanism (details
see Section 3.5.2), the global classifier can help build a more
robust and generalized classifier for each client.

3.4 HTTP Version Selector
The HTTP version selector includes a browser, a cache that
maintains some knowledge to assist HTTP version selection,
and a classifier to implement the HTTP version selection.
When the user starts to visit a website, the browser will

first make a query to the cache to see if there is a history
that could determine the HTTP version instead of repeated
measurements and classifier inference. A cache entry has
three fields: timestamp, URL, and historical HTTP version
selection. The timestamp represents the historical network
conditions of the same moment in a week since network
dynamics show weekly periodicity [8], and URL to describe
the web page structure information since the web page struc-
tures do not change frequently [18]. The cache only keeps
historical records for the last seven days.
According to the timestamp and URL, we can locate the

cached HTTP version selection. When a cache hit event oc-
curs, the cache will respond to the browser with a preferable
HTTP version directly. If there is no cache hit event, the
HTTP version selector will randomly select a version (H2
or H3). Meanwhile, the cache will be updated by the local
classifier. First, the extractor module in the classifier updater
component will obtain the features required by the classifier
to make selections. Subsequently, the local classifier per-
forms the prediction based on these features to output the
HTTP version selection and update the cache accordingly.
The local classifier is a fine-tuned decision model based on
network conditions and web page features. It is trained on
the local trace pool by a selected machine learning algorithm
in the classifier updater component.

3.5 Classifier Updater
The local classifier will become invalid over time due to the
dynamics of network conditions and web pages. The clas-
sifier updater aims to re-train the classifier periodically to
update the classifier based on the user’s dynamic brows-
ing activities. We record each trace entry and extract the
corresponding network condition and web page structure
features to build a local trace pool for updating. We conduct
this re-training process during the off-peak hours.

3.5.1 Feature Extractor and Labeling. As we described
above, FlexHTTP deploys agent servers at different strate-
gic network locations to represent the network conditions
of its nearby web servers. The client adopts these network
conditions between itself and each agent server. To avoid un-
necessary sensitivity to temporary network bursts and heavy
measurement overhead, the extractor measures the network
condition features within the time window 𝑡 . When the net-
work condition between the client and a specific server is
needed, the measurement result of the corresponding agent,
which represents the server in the current time window, will
be adopted. RTT and loss rate are obtained by Ping [24], and
network capacity is measured by iPerf [32]. The web page
structure features can be analyzed from the HTML files after
the page load completes. The detailed features are listed in
Table 1.

EuroMLSys ’22, April 5–8, 2022, RENNES, France Zhou et al.

Feature Set Description Experiment Settings

Network
Capacity (Mbps) 0.5, 1, 3, 5, 7, 10, 25
RTT (ms) 30, 50, 80, 120, 200, 300, 500
Packet Loss Rate (%) 0.01, 0.05, 0.1, 0.5, 1, 2.5, 3

Feature Set Description Avg Std Max

Web Page

of all files 36.06 25 255
Size of all files (MB) 1.08 0.56 22.99
of CSS files 2.28 2 37
Size of CSS files (MB) 0.04 0.03 0.41
of JavaScript files 5.66 4 55
Size of JavaScript files (MB) 0.18 0.10 1.53
of image files 24.58 10 231
Size of image files (MB) 0.72 0.20 22.64

Table 1: List of the selected features and experiment settings

Similar to the trace entries in the global trace pool, a trace
entry here only contains the browsing information and lacks
the ground-truth label of which version performs better. For-
tunately, the global trace pool has already calculated the
labels by clustering entries. Therefore, we can request each
trace entries’ labels from the global trace pool in the fol-
lowing way. The entries in the global trace pool have been
clustered into clusters [22], and each cluster will have a clus-
ter center and a shared ground-truth label. For each entry,
we compute the Euclidean distance between this entry and
each cluster center, and select the label of the cluster with
the smallest Euclidean distance as the label of this entry.

3.5.2 Local Trace Pool andLocalClassifierRe-training.
The network conditions and web pages are evolving from
time to time. Therefore, a local classifier without a timely
update might make a wrong HTTP version selection due to
the out-of-date information.

Therefore, FlexHTTP periodically re-trains the local clas-
sifier for keeping it up-to-date. The local trace pool is intro-
duced to collect the trace entries for re-training from the
perspective of an individual client. Each collected local en-
try is processed by the feature extracting and labeling. Also,
trace entries exceeding a pre-defined reservation time𝐻 will
not be used for the next re-training iteration. However, only
using the local trace pool for re-training will make the clas-
sifier underfit and perform poorly. Therefore, the re-training
will combine the information from global and local pools.
The global information is conveyed through a publicly acces-
sible global classifier. With the client’s browsing preference
and activity pattern, the generalized global classifier can be
fine-tuned by the local trace pool to satisfy the user’s charac-
teristics without losing generality. The idea of customizing
the global classifier with local trace entries is taken from the
widely used “fine-tune” technique [11].

4 PROOF-OF-CONCEPT EVALUATION
In this section, we use the Emulab testbed to conduct a proof-
of-concept evaluation of FlexHTTP.

Mean Median
0

2

4

6

8

10

12

S
p
ee

d
 I

n
d
ex

 (
se

co
n
d
)

11.16

7.46

11.04

7.23

10.56

7.08

HTTP/2

HTTP/3

FlexHTTP

(a) Average and median values
of Speed Index

30ms-0.01%-10M

80ms-0.05%-7M

120ms-0.5%-5M

230ms-1%-3M

300ms-3%-1M
0

5

10

15

20

S
p
ee

d
 I

n
d
ex

 (
se

co
n
d
) HTTP/2

HTTP/3

FlexHTTP

(b) Median values of Speed Index
of each configuration

Figure 4: The Speed Index performance comparison

Experiment Setup. Before performing the evaluation, Flex-
HTTP requires an initial classifier at the beginning rounds.
Benefiting from the controllable Emulab testbed, we collected
556,800 experiment configurations in various network con-
ditions. Each experiment configuration represents a specific
RTT-loss_rate-capacity composition. The information of
different experiment configurations are shown in Table 1.
Since HTTP version selection is a binary classification prob-
lem, we set “H3 better” traces as positive samples and “H2
better” traces as negative samples.

We have tried Decision Tree [29], Random Forest [3], XG-
Boost [5], and CatBoost [26] algorithms to implement the
classifier and apply 10-fold cross-validation for training and
validation. We adopt the best-performing (88.8% accuracy)
model trained by the Random Forest algorithm as the initial
classifier. When building the initial model, we do not per-
form hyperparameter tuning for these supervised machine
learning algorithms. The hyperparameters are configured as
default values, except that the tree depth is set to 4. FlexHTTP
can improve its performance over time with the mechanisms
of global updating and local re-training. Therefore, the initial
classifier does not need to be tuned to prevent overfitting.

We select five common network environments (RTT-loss
rate-capacity: 30ms-0.01%-10Mbps, 80ms-0.05%-7Mbps, 120ms-
0.5%-5Mbps, 230ms-1%-3Mbps, 300ms-3%-1Mbps) as the eval-
uated configurations. Each configuration owns its indepen-
dent client-server pair to emulate the configured network
conditions, but all these configurations share the same agent
server for information synchronization. The HTTP protocol
versions, test websites, and machine setup are the same as
those in Section 2. For each test website, we browse each page
10 times to avoid the impact of possible network fluctuation.
Evaluation Results. We use SI to evaluate H2, H3, and
FlexHTTP. Fig. 4(a) shows the SI improvement brought from
FlexHTTP owing to flexible HTTP version selection between
H2 and H3. The mean SI value of FlexHTTP is 600ms and
480ms shorter than those of H2 and H3, respectively. As for
median SI values, FlexHTTP also achieves 380ms and 150ms

FlexHTTP: An Intelligent and Scalable HTTP Version Selection System EuroMLSys ’22, April 5–8, 2022, RENNES, France

reduction separately. Furthermore, we investigate the SI per-
formance of H2, H3 and FlexHTTP on each configuration to
depth in Fig. 4(b). We find that, although the best-performing
HTTP versions on different configurations and web pages
are different, FlexHTTP can always capture the appropriate
HTTP version in almost every experiment configuration.
In a word, FlexHTTP can select a more appropriate HTTP
version to improve browsing performance according to the
network environment and web page structure.

5 RELATEDWORK
QUIC is built on top of UDP with the goal of efficient and
reliable data transport [16, 20]. Lots of attention from both
academia and industry have been paid to QUIC continuously.
There is a considerable amount literature about the measure-
ment of the performance of QUIC adoption under a control-
lable environment [17, 23] and the real Internet [20, 40].

Recently, the latest versions of HTTP, i.e., H2 [1] on TCP
and H3 [2] on QUIC, have gradually been recognized and
widely used in various Internet products and services. Varvello
et al. [34] measured the difference between H2 and H1.1 in
detail, showing that in most of the studied websites, H2 could
reduce the PLT of H1.1. Trevisan et al. [33] conducted a com-
parative study on H1.1, H2, and H3 by using a client to access
various websites on the Internet. They concluded that they
could not find one HTTP version always performed better
than the rest two. Furthermore, Yu and Benson [38] explored
the difference between the H2 and H3 in the production envi-
ronment by measuring the web services deployed by Google,
Facebook, and Cloudflare.

These studies provided an opportunity to unravel the per-
formance difference between H2 and H3. However, the net-
work parameters of the end-to-end paths between the client
and the web servers could not be configured flexibly. Thus
these studies could not clearly summarize the comprehensive
relationship between network parameters and performance
comparison. To fill the gap, we conduct a controllable mea-
surement to investigate the performance difference between
H2 and H3 in different situations. We find that both network
conditions and web page structures are relevant to the per-
formance comparison of H2 and H3. It is vital to select the
suitable HTTP version in different scenarios.

Under such argument that the appropriate HTTP version
needs to be selected in different conditions, there is one prior
work on transport protocol selection. Zhang et al. [39] pro-
posed WiseTrans, an adaptive transport protocol selection
approach according to the network condition, intending to
improve the performance of mobile web services. However,
WiseTrans only works for the transport layer, while Flex-
HTTP works at the application layer and will also consider

the application layer information such as web page struc-
tures. Moreover, FlexHTTP has the following advantages
over WiseTrans. (1) WiseTrans aims at serving the Baidu
app’s mobile users only, and has been evaluated only within
the Baidu app’s user environments. In contrast, FlexHTTP
has the goal of serving Internet users getting connectivity
from various types of services, and we do not limit it to be ap-
plied in mobile scenarios. (2) WiseTrans uses a global model
to serve all clients, while FlexHTTP allows each client to use
a local trace pool to further enhance the classifier.

6 CONCLUSION AND FUTUREWORK
Based on the phenomenon that neither HTTP/2 nor HTTP/3
can always perform better under different situations, we pro-
pose FlexHTTP, an intelligent and scalable HTTP version
selection system. FlexHTTP leverages a supervised machine
learning classifier to select the appropriate HTTP version
according to different network conditions and page struc-
tures. A group of distributed agent servers are deployed to
ensure the scalability of FlexHTTP and keep the classifier
up-to-date. We build a proof-of-concept implementation of
FlexHTTP and conduct an evaluation of FlexHTTP using the
Emulab testbed. The evaluation results show that FlexHTTP
can reduce the Speed Index value by up to 600ms.

While the above results demonstrate the potential of Flex-
HTTP in improving the experience of web browsing, some
open issues still need to be further addressed to make Flex-
HTTP more practical. 1) Evaluating the performance of
FlexHTTP in the wild. This paper evaluates a proof-of-
concept prototype of FlexHTTP deployed on an entirely
controlled testbed. It is necessary for going through a com-
prehensive set of possible combinations of parameters. Still,
we could evaluate FlexHTTP on the real Internet to see how
it performs in environments with more complicated net-
work dynamics. 2) Investigating the building blocks of
FlexHTTP in a deep dive. We only finish the preliminary
evaluation of the FlexHTTP prototype without a detailed
study of every component. The deployment strategy of agent
servers, the overhead of classifier training and updating, and
the setting of update period and retention time should be fur-
ther explored. 3) Performance robustness verification.
In addition to the SI metric, we also need to discuss the per-
formance of FlexHTTP using other performance metrics,
e.g., Page Load Time and Core Web Vitals. Meanwhile, we
will further enhance FlexHTTP to well serve mobile devices
with limited computation capability and battery life.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foun-
dation of China (No. 61971145). Yang Chen is the correspond-
ing author.

EuroMLSys ’22, April 5–8, 2022, RENNES, France Zhou et al.

REFERENCES
[1] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext

transfer protocol version 2 (HTTP/2). Available: https://datatracker.
ietf.org/doc/html/rfc7540. Accessed: 2022-03-21.

[2] Mike Bishop. 2021. Hypertext Transfer Protocol Version 3 (HTTP/3).
Available: https://datatracker.ietf.org/doc/html/draft-ietf-quic-http.
Accessed: 2022-03-21.

[3] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001),
5–32.

[4] Tian Bu and Don Towsley. 2002. On Distinguishing Between Internet
Power Law Topology Generators. In Proc. of INFOCOM.

[5] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree
Boosting System. In Proc. of SIGKDD.

[6] Lucas Clemente. 2022. A QUIC Implementation in Pure Go. Available:
https://github.com/lucas-clemente/quic-go. Accessed: 2022-03-21.

[7] Emulab. 2022. Type info for pc3000. Available: https://www.emulab.
net/apt/show-nodetype.php?type=pc3000. Accessed: 2022-03-21.

[8] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2007.
Youtube Traffic Characterization: A View From the Edge. In Proc. of
IMC.

[9] Google LLC. 2022. Lighthouse. Available: https://developers.google.
com/web/tools/lighthouse. Accessed: 2022-03-21.

[10] Google LLC. 2022. Speed Index. Available: https://web.dev/speed-
index. Accessed: 2022-03-21.

[11] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo,
Iz Beltagy, Doug Downey, and Noah A Smith. 2020. Don’t Stop Pre-
training: Adapt Language Models to Domains and Tasks. In Proc. of
ACL.

[12] Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshifumi Nishida.
2012. The NewReno Modification to TCP’s Fast Recovery Algorithm.
Available: https://datatracker.ietf.org/doc/html/rfc6582. Accessed:
2022-03-21.

[13] Fabien Hermenier and Robert Ricci. 2012. How to Build a Better
Testbed: Lessons From a Decade of Network Experiments on Emulab.
In Proc. of TRIDENTCOM.

[14] Matt Holt. 2022. Fast, cross-platform HTTP/2 web server with auto-
matic HTTPS. Available: https://github.com/mholt/caddy. Accessed:
2022-03-21.

[15] Yi Hu, Feixiong Zhang, K. K. Ramakrishnan, and Dipankar Raychaud-
huri. 2015. GeoTopo: A PoP-level Topology Generator for Evaluation
of Future Internet Architectures. In Proc. of ICNP.

[16] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multi-
plexed and Secure Transport. Available: https://www.rfc-editor.org/
rfc/rfc9000.html. Accessed: 2022-03-21.

[17] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017. Taking a Long Look at QUIC: An
Approach for Rigorous Evaluation of Rapidly Evolving Transport Pro-
tocols. In Proc. of IMC.

[18] Nikhil Kansal, Murali Ramanujam, and Ravi Netravali. 2021. Alo-
hamora: Reviving HTTP/2 Push and Preload by Adapting Policies On
the Fly. In Proc. of NSDI.

[19] Simon Kelley. 2022. Dnsmasq. Available: http://www.thekelleys.org.
uk/dnsmasq/doc.html. Accessed: 2022-03-21.

[20] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The QUIC Transport Protocol: Design and Internet-
scale Deployment. In Proc. of SIGCOMM.

[21] Xuebing Li, Bingyang Liu, Yang Chen, Yu Xiao, Jiaxin Tang, and Xin
Wang. 2019. Artemis: A Practical Low-latency Naming and Routing
System. In Proc. of ICPP.

[22] James MacQueen. 1967. Some Methods for Classification and Analysis
of Multivariate Observations. In Proc. of 5th Berkeley Symp. Math.
Statist. Probability.

[23] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. 2016. How quick is
QUIC?. In Proc. of ICC.

[24] David L. Mills. 1983. Internet Delay Experiments. RFC 889. Available:
https://www.rfc-editor.org/rfc/rfc889.html. Accessed: 2022-03-21.

[25] Giovane C. M. Moura, Sebastian Castro, Wes Hardaker, Maarten
Wullink, and Cristian Hesselman. 2020. Clouding up the Internet:
how centralized is DNS traffic becoming?. In Proc. of IMC.

[26] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost:
Unbiased Boosting with Categorical Features. In Proc. of NeurIPS.

[27] Mohammad Rajiullah, Andra Lutu, Ali Safari Khatouni, Mah-Rukh
Fida, Marco Mellia, Anna Brunstrom, Ozgu Alay, Stefan Alfredsson,
and Vincenzo Mancuso. 2019. Web Experience in Mobile Networks:
Lessons from Two Million Page Visits. In Proc. of WWW.

[28] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eg-
gert, and Richard Scheffenegger. 2018. CUBIC for Fast Long-Distance
Networks. Available: https://datatracker.ietf.org/doc/html/rfc8312. Ac-
cessed: 2022-03-21.

[29] S. Rasoul Safavian and David Landgrebe. 1991. A Survey of Decision
Tree Classifier Methodology. IEEE Transactions on Systems, Man, and
Cybernetics 21, 3 (1991), 660–674.

[30] Salvatore Scellato, Cecilia Mascolo, Mirco Musolesi, and Jon Crowcroft.
2011. Track Globally, Deliver Locally: Improving Content Delivery
Networks by Tracking Geographic Social Cascades. In Proc. of WWW.

[31] Jiaxin Tang, Sen Liu, Yang Xu, Zehua Guo, Junjie Zhang, Peixuan Gao,
Yang Chen, Xin Wang, and H. Jonathan Chao. 2022. ABS: Adaptive
Buffer Sizing via Augmented Programmability with Machine Learning.
In Proc. of INFOCOM.

[32] Ajay Tirumala. 1999. iPerf: The TCP/UDP bandwidth measurement
tool. Available: https://iperf.fr. Accessed: 2022-03-21.

[33] Martino Trevisan, Danilo Giordano, and Ali Safari Khatouni. 2021.
Measuring HTTP/3: Adoption and Performance. In Proc. of MedCom-
Net.

[34] Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn,
Alessandro Finamore, and Konstantina Papagiannaki. 2016. Is the
Web HTTP/2 Yet?. In Proc. of PAM.

[35] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina:
Computer-Generated Congestion Control. In Proc. of SIGCOMM.

[36] Jie Wu and Yunsheng Wang. 2012. Social Feature-based Multi-path
Routing in Delay Tolerant Networks. In Proc. of INFOCOM.

[37] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shang-
guang Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. 2021. From Cloud
to Edge: A First Look at Public Edge Platforms. In Proc. of IMC.

[38] Alexander Yu and Theophilus A. Benson. 2021. Dissecting Performance
of Production QUIC. In Proc. of WWW.

[39] Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie
Yang,Miao Zhang, and Yang Yue. 2021. WiseTrans : Adaptive Transport
Protocol Selection for Mobile Web Service. In Proc. of WWW.

[40] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li,
Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al.
2021. XLINK: QoE-Driven Multi-Path QUIC Transport in Large-scale
Video Services. In Proc. of SIGCOMM.

[41] Mengying Zhou, Tiancheng Guo, Yang Chen, Junjie Wan, and Xin
Wang. 2021. Polygon: A QUIC-Based CDN Server Selection System
Supporting Multiple Resource Demands. In Proc. of Middleware.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http
https://github.com/lucas-clemente/quic-go
https://www.emulab.net/apt/show-nodetype.php?type=pc3000
https://www.emulab.net/apt/show-nodetype.php?type=pc3000
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse
https://web.dev/speed-index
https://web.dev/speed-index
https://datatracker.ietf.org/doc/html/rfc6582
https://github.com/mholt/caddy
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9000.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://www.rfc-editor.org/rfc/rfc889.html
https://datatracker.ietf.org/doc/html/rfc8312
https://iperf.fr

	Abstract
	1 Introduction
	2 Motivating Measurement
	2.1 Measurement Setup and Metric
	2.2 Measurement Results and Findings
	2.3 Towards a Flexible HTTP Version Selection

	3 FlexHTTP Design
	3.1 Design Principles and Practical Challenges
	3.2 Overview of FlexHTTP
	3.3 Agent Servers
	3.4 HTTP Version Selector
	3.5 Classifier Updater

	4 Proof-of-Concept Evaluation
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

