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Abstract
Network Architecture Search (NAS) methods have recently

gathered much attention. They design networks with better

performance and use amuch shorter search time compared to

traditional manual tuning. Despite their efficiency in model

deployments, most NAS algorithms target a single task on a

fixed hardware system. However, real-life few-shot learning

environments often cover a great number of tasks (𝑇 ) and

deployments on a wide variety of hardware platforms (𝐻 ).

The combinatorial search complexity 𝑇 ×𝐻 creates a fun-

damental search efficiency challenge if one naively applies

existing NAS methods to these scenarios. To overcome this

issue, we show, for the first time, how to rapidly adapt model

architectures to new tasks in a many-task many-hardware
few-shot learning setup by integrating Model Agnostic Meta

Learning (MAML) into the NAS flow. The proposed NAS

method (H-Meta-NAS) is hardware-aware and performs op-

timisation in the MAML framework. H-Meta-NAS shows a

Pareto dominance compared to a variety of NAS and man-

ual baselines in popular few-shot learning benchmarks with

various hardware platforms and constraints. In particular,

on the 5-way 1-shot Mini-ImageNet classification task, the

proposed method outperforms the best manual baseline by a

large margin (5.21% in accuracy) using 60% less computation.

1 Introduction
Existing Network Architecture Search (NAS) methods show

promising performance on image [21, 37], language [13, 28]

and graph data [36]. The automation not only reduces the hu-

man effort required for architecture tuning but also produces

architectures with state-of-the-art performance in domains

like image classification [37] and language modeling [28].

Most NAS methods today focus on a single task with a fixed

hardware system, yet real-life model deployments covering

multiple tasks and various hardware platforms will signif-

icantly prolong this process. As illustrated in Figure 1, a

common design flow is to re-engineer the architecture and

train for different task(𝑇 )-hardware(𝐻 ) pairs with different

constraints (𝐶). The architectural engineering phase can be

accomplished whether manually or by using an established

NAS procedure. The major challenge is designing an effi-

cient algorithmic method to overcome the quickly scaling

O(𝑇𝐻𝐶) search complexity described in Figure 1.

Few-shot learning systems follow exactly this many-task
many-device setup, when considering deployments on dif-

ferent user devices on key applications such as facial [12]

and speech recognition [14]. A task in few-shot learning nor-

mally takes an 𝑁 -way 𝐾-shot formulation, where it contains

𝑁 classes with 𝐾 support samples and 𝑄 query samples in

each class. Model-Agnostic Meta-Learning (MAML), incorpo-

rating the idea of learning to learn, builds ameta-model using

a great number of training tasks, and then adapts the meta-

model to unseen test tasks using only a very small number of

gradient updates [10]. MAML then becomes a powerful and

elegant approach for few-shot learning – its ability to quickly

adapt to new tasks can potentially shrink the O(𝑇𝐻𝐶) com-

plexity illustrated in Figure 1 to O(𝐻𝐶). In the meantime,

hardware-aware NAS methods [3, 4, 33], e.g. the train-once-
for-all technique [3], support deployments of searched mod-

els to fit to different hardware platforms with various latency

constraints. These hardware-aware NAS techniques further

reduce the search complexity from O(𝑇𝐻𝐶) to O(𝑇 ) [4].
In this paper, we propose a novel Hardware-aware Meta

Network Architecture Search (H-Meta-NAS). Integration of

the MAML framework into hardware-aware NAS theoreti-

cally reduces the search complexity from O(𝑇𝐻𝐶) to O(1),
allowing for a rapid adaption of model architectures to un-

seen tasks on new hardware systems. However, we identified

the following challenges in this integration:

• Classic NAS search space containsmany over-parameterised

sub-models, this makes it hard to tackle the over-

fitting phenomenon in few-shot learning.

• Hardware-awareNAS profiles latency for sub-networks

on each task-hardware pair, this profiling can be pro-

longed significantly with a great number of tasks and,

more importantly, if the targeting device has scarce

computation resources.

To tackle these challenges, we then propose to use Global

Expansion (GE) and Adaptive Number of Layers (ANL) to

allow a drastic change in model capabilities for tasks with

varying difficulties. Our experiments later demonstrate that

such changes alleviate over-fitting in few-shot learning and

improve the accuracy significantly. We also present a novel

layer-wise profiling strategy to allow reuse of profiling in-

formation across different tasks.

In this paper, we make the following contributions:
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Figure 1. Deploying networks in a many-task many-device few-shot learning setup. This implies a large search complexity

O(𝑇𝐻𝐶).

• We propose a novel Hardware-aware Network Ar-

chitecture Search for Meta learning (H-Meta-NAS).

H-Meta-NAS quickly adapts meta-architectures to

new tasks with hardware-awareness and can be condi-

tionedwith various device-specific latency constraints.

The proposed NAS reduces search complexity from

O(𝑇𝐻𝐶) to O(1) in a realisticmany-task many-device
few-shot learning setup. We extensively evaluate H-

Meta-NAS on various hardware platforms (GPU, CPU,

mCPU, IoT, ASIC accelerator) and efficiency constraints

(latency and model size), our latency-accuracy perfor-

mance curve demonstrates a pareto dominance.

• We propose a task-agnostic layer-wise profiling strat-

egy for the NAS. This profiling reduces the profiling

run-time from around 10
5
hours to 1.2 hours when

targeting hardware with limited capabilities (e.g. IoT
devices).

• We show several tricks for the NAS algorithm, named

Global Expansion and Adaptively Number of Layers

respectively. These methods help the NAS to over-

come the over-fitting problem in few-shot learning

from the architectural perspective.

2 Related work
Few-shot learning in the MAML framework. Inspired

by human’s ability to learn from only a few tasks and gener-

alise the knowledge to unseen problems, a meta learner is

trained over a distribution of tasks with the hope of general-

ising its learned knowledge to new tasks [10].

argmin

𝜃

(ET∈T [L𝜃 (T )]) (1)

Equation (1) captures the optimisation objective of meta-

learning, where optimal parameters are obtained through

optimising on a set of meta-training tasks. Current main-

stream approaches of using meta-learning to solve few-shot

learning problems can be roughly categorised into three

types: Memory-based, Metric-based and Optimisation-based.

Memory-based method utilises a memory-augmented neu-

ral network [11, 22] to memorise meta-knowledge for a fast

adaption to new tasks. Metric-based methods aim to meta-

learn a high-dimensional feature representation of samples,

and then apply certain metrics to distinguish them. For in-

stance, Meta-Baseline utilises the cosine nearest-controid

metric [6] and DeepEMD applies the Wasserstein distance

[35]. Optimisation-based method, on the other hand, focuses

on learning a good parameter initialisation (also known

as meta-parameters or meta-weights) from a great number

of training tasks, such that these meta-parameters adapt

to new few-shot tasks within a few gradient updates. The

most well-established Optimisation-based method is Model-

Agnostic Meta-Learning (MAML) [10]. MAML is a powerful

yet simple method to tackle the few-shot learning problem,

since its adaption relies solely on gradient updates. Antoniou

et al. later demonstrate MAML++, a series of modifications

that improved MAML’s performance and stability. Baik et al.

introduce an additional network for generating adaptive

parameters for the inner-loop optimisation.

Despite the rise in popularity of the meta-learning frame-

work applied to few-shot learning, little attention has been

paid to the runtime efficiency of these approaches. Meta-

learning has been explored in key applications such as facial

and speech recognition [12, 14] for mobile deices. Real-life

deployments on these devices resemble a many-task many-
device scenario, where learning on each user’s data is a few-

shot learning task and different hardware platforms repre-

sent different types of under-deployment devices. Memory-

based and Metric-based meta-learning methods are then

challenged by the hardware or latency constraints: Memory-

based methods need additional storage space (at least double)

and Metric-based approaches use multiple inference runs

(at least two) for a single image classification. In this work,
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we then focus solely on an Optimisation-based approach

because of the runtime concern outlined above. The pro-

posed NAS method utilises the simple yet effective MAML++

framework: after adapting the model to new tasks, MAML++

executes exactly one inference run for a single test sample

without additional memory usage.

Network architecture search. Architecture engineering
is a tedious and complex process requiring a lot of effort from

human experts. Network Architecture Search (NAS) focuses

on reducing the amount of manual tuning in this design

space. Early NAS methods use evolutionary algorithms and

reinforcement learning to traverse the search space [25, 37].

These early methods require scoring architectures trained

to a certain convergence and thus use a huge number of

GPU hours. Two major directions of NAS methods, Gradient-

based and Evolution-based methods, are then explored in

parallel in order to make the search cost more affordable.

Gradient-based NAS methods use Stochastic Gradient De-

scent (SGD) to optimise a set of probabilistic priors that are

associated with architectural choices [5, 21]. Although these

probabilistic priors can be made latency-aware [32, 33], it is

challenging to make them follow a hard latency constraint.

Evolution-based NAS, on the other hand, operates on top

of a pre-trained super-net and use evolutionary algorithms

or reinforcement learning to pick best-suited sub-networks

[3, 4], making it easier to be constrained by certain hardware

metrics. For instance, Once-for-all (OFA) is an Evolution-

based NAS method and its searched networks are not only

optimised for a specific hardware target but also constrained

by a pre-defined latency budget [3]. Our proposed H-Meta-

NAS shares certain similarities to Once-for-all, since this

method offers a chance to reduce the hardware search com-

plexity from O(𝐻𝐶) to O(1).
Several NAS methods are proposed under the MAML

framework [15, 20, 27], these methods successfully reduce

the search complexity from O(𝑇 ) to O(1). However, some

of these methods do not show significant performance im-

provements compared to carefully designed MAML methods

(e.g. MAML++) [15, 27]. In the meantime, some of these

MAML-based NAS methods follow the Gradient-based ap-

proach and operate on complicated cell-based structures [20].

We illustrate later how cell-based NAS causes an undesirable

effect on latency, and also meets fundamental scalability chal-

lenges when trying to deploy in a many-task many-device
few-shot learning setup.

3 Method
Problem formulation In the MAML setup, we consider a

set of tasks T and each task T𝑖 ∈ T contains a support set

D𝑠
𝑖 and a query set D𝑞

𝑖
. The support set is used for task-

level learning while the query set is in charge of evaluat-

ing the meta-model. All tasks are divided into three sets,

namely meta-training (T𝑡𝑟𝑎𝑖𝑛), meta-validation (T𝑣𝑎𝑙 ) and
meta-testing (T𝑡𝑒𝑠𝑡 ) sets.

Equation (2) formally states the objective of the pre-training

stage illustrated in Figure 2 Phase 1. The objective of this

process is to optimise the parameters 𝜃 of the super-net for

various sub-networks sampled from the architecture set A.
This will ensure the proposed H-Meta-NAS to have both

the meta-parameters and meta-architectures ready for the

adaption to new tasks.

argmin

𝜃

E𝛼∼𝑝 (A) [ET∈T𝑡𝑟𝑎𝑖𝑛 [L𝜃 (T , 𝛼)]] (2)

Equation (3) describes how H-Meta-NAS adapts network

architectures to a particular task T with a given hardware

constraint Cℎ (Phase 3 in Figure 2). In practice, using the

support set data D𝑠
𝑖 from a target task T𝑖 , we apply a ge-

netic algorithm for finding the optimal architectures 𝛼∗. We

discuss further how this process in details in later sections.

𝛼∗ = min

𝛼

∑︁
𝛼 ∈A

L𝜃 (D𝑠
𝑖 , 𝛼)

s.t. C(𝛼) ≤ Cℎ
(3)

Architecture space. H-Meta-NAS considers a search space

composed of different kernel sizes, number of channels and

activation types. We mostly consider a VGG9-based NAS

backbone, that is a 5-layer CNN model with the last layer

being a fully connected layer. We chose this NAS backbone

because both MAML [10] and MAML++ [1] used a VGG9

model architecture. The details of this backbone are in Ap-

pendix.

We allow kernel sizes to be picked from {1, 3, 5}, channels
to be expandedwith a set of scaling factors {0.25, 0.5, 0.75, 1, 1.5, 2, 2.25}
and also six different activation functions (details in Appen-

dix). For a single layer, there is 3 × 7 × 6 = 126 search op-

tions. H-Meta-NAS also contains an Adaptive Number of

Layers strategy, the network is allowed to use a subset of

the total layers in the supernet with a maximum usage of

4 layers. The whole VGG9-based backbone then gives us in

total 126
4 × 4 ≈ 10

9
possible neural network architectures.

In addition, to demonstrate the ability of H-Meta-NAS on

more complex NAS backbone. We also studied an alternative

ResNet12-based NAS backbone, that has approximately 2 ×
10

24
possible sub-networks.

Super-netmeta-training strategy. As illustrated by prior
work [3], progressively shrinking the super-net during meta-

training can reduce the interference between sub-networks.

We observe the same phenomenon and then use a similar

progressive shrinking strategy in H-Meta-NAS, the archi-

tectural sampling process 𝛼 ∼ 𝑝 (A) will pick the largest

network with a probability of 𝑝 , and randomly pick other

sub-networks with a probability of 1 − 𝑝 . We apply an expo-

nentially decay strategy to 𝑝:
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Figure 2. An overview of the three main stages of the proposed H-Meta-NAS algorithm.

𝑝 = 𝑝𝑒 + (𝑝𝑖 − 𝑝𝑒 ) × 𝑒𝑥𝑝 (−𝛼 × 𝑒 − 𝑒𝑠
𝑒𝑚 − 𝑒𝑠

)) (4)

𝑝𝑒 and 𝑝𝑖 are the end and initial probabilities. 𝑒 is the current

number of epochs, and 𝑒𝑠 and 𝑒𝑚 are the starting and end

epochs of applying this decaying process. 𝛼 determines how

fast the decay is. In our experiment, we pick 𝑝𝑖 = 1.0 and

𝑒𝑠 = 30, because the super-net reaches a relatively stable

training accuracy at that point. We then start the decaying

process, and the value 𝛼 = 5 is determined through a hyper-

parameter study shown in our Appendix.

Layer-wise profiling. Hardware-aware NAS needs the
run-time of sub-networks on the targeting hardware to guide

the search process [3, 33]. However, the profiling stage can be

time-consuming if given a low-end hardware as the profiling

target and the search space is large. For instance, running

a single network inference of VGG9 on the Raspberry Pi

Zero with a 1GHz single-core ARMv6 CPU takes around

2.365 seconds to finish. If we assume this is the averaged

time needed for profiling a sub-network, given that the en-

tire search space includes around 10
9
sub-networks, a naive

traverse will take a formidable amount of time which is ap-

proximately 6 × 10
5
hours. More importantly, the amount of

profiling time scales with the number of hardware devices

(O(𝐻 )). Existing hardware-aware NAS schemes build pre-

dictive methods to estimate the run-time of sub-networks

[3, 33] and have a relatively significant error. We show in

our evaluation, performing an exact profiling can be done

with a low cost if allowing a per-layer profiling strategy.

Adaption strategy. The adaption strategy uses a genetic

algorithm [31] to pick the best suited sub-network with re-

spective to a given hardware constraint, the full algorithm

is detailed in Appendix. In general, the adaption algorithm

randomly samples a set of tasks from T𝑣𝑎𝑙 , and uses the aver-
aged loss value and satisfaction to the hardware constraints

as indicators the for the genetic algorithm. The genetic al-

gorithm has a pool size 𝑃 and number of iterations 𝑀 , we

demonstrate the optimal values are 𝑃 = 100, 𝑀 = 200 in our

evaluation.

NAS backbone design. One particular problem in few-

shot learning is that models are prone to over-fitting. This is

because only a small number of training samples are avail-

able for each task and the network normally iterate on these

sample many times. We would like to explore on the archi-

tectural space to help models to overcome over-fitting and

conduct a case study for different design options available

for the backbone network. We identify the following key

changes to the NAS backbone to help the models to have

high accuracy in few-shot learning:

• 𝑛 × 𝑛 pooling: Pooling that applied to the final con-

volutional operation, 𝑛 × 𝑛 indicates the height and

width of feature maps after pooling.

• Global Expansion (GE): Allowing the NAS to globally

expand or shrink the number of channels of all layers.

• Adaptive Number of Layers (ANL): Allowing the NAS

to use an arbitrary number of layers, the network

then is able to early stop using only a fewer number

of layers.

Figure 3 further illustrate that GE and ANL can allow a

much smaller model compared to existing NAS backbones.

We then demonstrate using a case study in our evaluation

how a combination of these techniques can help H-Meta-

NAS: the final searched model can have an up to 14.28%

accuracy increase on the 5-way 1-shot Mini-ImageNet clas-

sification if using these optimisation tricks.
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Existing NAS methods have a fixed number of channels 
for layers at the 'edge' of each searchable block 

GE allows these edge layers to shrink/expand

output

ANL allows the network to use fewer layers

Figure 3. A graphical illustration of GE and ANL. Both methods will allow a more drastic change in model capabilities,

allowing the searched model to deal with tasks with varying difficulties.

Table 1. Details of hardware systems experimented with

H-Meta-NAS.

System Device

Cloud Nvidia GeForce RTX 2080 Ti

Mid-end CPU Intel CPU

Mobile CPU Raspberry Pi 4B

IoT Raspberry Pi Zero

ASIC Eyeriss [7]

4 Evaluation
We evaluate H-Meta-NAS in a few-shot learning setup. For

each dataset, we search for the meta-architecture and meta-

parameters. We then adapt the meta-architecture with re-

spect to a target hardware-constraint pair. In the evaluation

stage, we then re-train the obtained hardware-aware task-

specific architecture to convergence and report the final

accuracy. We consider three popular datasets in the few-

shot learning community: Omniglot, Mini-ImageNet and

Few-shot CIFAR100. We use the PytorchMeta framework to

handle the datasets [8].

Omniglot is a handwritten digits recognition task, con-

taining 1623 samples [18].We use themeta train/validation/test

splits used Vinyals et al. [30]. These splits are over 1028/172/423
classes (characters).

Mini-ImageNet is first introduced by Vinyals et al.. This
dataset contains images of 100 different classes from the

ILSVRC-12 dataset [9], the splits are taken fromRavi et al.[24].
FC100 is introduced by Oreshkin et al., the datasets has

100 different classes from the CIFAR100 dataset [17].

Table 1 details the systems and representative devices con-

sidered. Our Appendix contains a more detailed explanation

of the specs of each hardware device. We use the ScaleSIM

cycle-accurate simulator [26] for the Eyeriss [7] accelerator.

Details about this simulation and more information with

respect to the datasets and search configurations are in our

Appendix.
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Figure 4. The effect of different pool size (P) and different

number of iterations (M).

The effect of pool sizes. We identify the following two

hyper-parameters that can potentially affect the performance

in the adaption stage, namely the number of iterations𝑀 and

the pool size 𝑃 , and then run an hyper-parameter analysis

in Figure 4. The full adaption algorithm making use of these

hyper-parameters is in our Appendix. The horizontal axis

shows the number of iterations and the vertical axis shows

the averaged accuracy on the sampled tasks for all architec-

tures in the pool. Figure 4 shows that the accuracy conver-

gence is reached after around 150 iterations, and running

for additional iterations only provides marginal accuracy

gains. For this reason, we picked the number of iterations to

be 200 for a balance between accuracy and run-time. In the

meantime, we notice in general a higher pool size will give

better adapted accuracy. However, this does not mean the

final searched accuracy is affected to the same degree. The

final re-trained accuracies of searched architectures show

an accuracy gap of 0.21% between 𝑃 = 100 and 𝑃 = 200 and

0.32% between 𝑃 = 100 and 𝑃 = 500. An increase in pool

size can prolong the run-time significantly, we thus picked

a pool size of 100 since it offers the best balance between

accuracy and run-time.

Evaluating pooling, GE and ANL. Our results in Table 2
suggest that a correct pooling strategy, GE and ANL can
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Table 2. A case study of different design options for the NAS

backbone network. Experiments are executed with a model

size constraint of 70𝐾 on the Mini-ImageNet 5-way 1-shot

classification task.

Design options Accuracy

MAML 48.70%

MAML++ 52.15%

H-Meta-NAS + 1 × 1 Pool 42.28%

H-Meta-NAS + 5 × 5 Pool 46.13%

H-Meta-NAS + 5 × 5 Pool + GE 53.09%

H-Meta-NAS + 5 × 5 Pool + GE + ANL 56.35%

Table 3. Comparing latency predictor with our proposed

profiling. MSE Error is the error between estimated and

measured latency, Time is the total time taken to collect and

build the estimator.

Hardware Metric Latency Predictor Layer-wise Profiling

2080 Ti GPU

MSE Error 0.0188 0.00690

Time 16.09 mins 6.216 secs

Intel i9 CPU

MSE Error 0.165 0.0119

Time 21.92 mins 16.41 secs

Pi Zero

MSE Error N/A 0.00742

Time N/A (Approx. 220 hours) 82.41 mins

change the NAS backbone to allow the search space to reach

much smaller models and thus provide a better accuracy. In

addition, Table 2 also illustrates that 5 × 5 pooling is neces-

sary for a higher accuracy. We hypothesize this is because

a relatively large fully-connected layer after the pooling is

required for the network to achieve a good accuracy in this

few-learning setup.

Latency predictor vs. layer-wise latency profiling. We

re-implemented the latency predictor in OFA [3] to illustrate

how a layer-wise profiling and look-up method is a perfect

match in our learning scenario.We pick 16K training samples

and 10K validation samples to train and test the latency

predictor, which is the same as setup used in OFA. We use

another 10K testing samples to evaluate the performance of

OFA-based latency predictor against our layer-wise profiling

on different hardware systems in terms of MSE (measuring

the latency estimation quality) and Time (measuring the

efficiency).

As illustrated in Table 3, layer-wise profiling saves not

only time but also has a smaller MSE error compared to

a predictor-based strategy that is very popular in today’s

evolutionary-basedNAS frameworks [3, 4]. In addition, layer-

wise profiling shows orders of magnitude better run-time

when targeting hardware devices with scarce computational

resources. If we consider an IoT class device as a target (i.e the

Raspberry Pi Zero), it requires an unreasonably large amount

of time to generate training samples for latency predictors,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Inference Latency on NVIDIA 2080 Ti GPU (ms)
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Figure 5. Targeting a GPU

Figure 6. Applying H-Meta-NAS with GPU latency as opti-

misation targets.

making them an infeasible approach in real life. For instance,

the total time consumed by latency predictor is infeasible to

execute on Pi Zero (last row in Table 3). Of course, in reality,

there is also a great number of IoT devices using more low-

end CPUs compared to Pi Zero (ARMV5 or ARMV4), making

the latency predictor even harder to be deployed on these

devices. Also in a many-hardware setup considered in this

paper, this profiling is executed O(H) times.

Most existing layer-wise look-up approaches consider at

most mobile systems as targeting platforms [33, 34]. These

systems are in general more capable than a great range of

IoT devices. In this paper, we demonstrate the effectiveness

of this approach on more low-end systems (Raspberry Pi and

Pi Zeros), illustrating this is the more scalable approach for

hardware-aware NAS for constrained hardware systems.

Evaluating H-Meta-NAS searched architectures. Ta-
ble 4 shows the results of running the 5-way 1-shot and

5-shot Mini-ImageNet tasks, similar to the previous results,

we match the size of searched networks to MAML, MAML++

and ALFA+MAML+L2F. Table 4 not only displays results

on MAML methods with fixed-architectures, it also shows

the performance of searched networks including Auto-Meta

[15], BASE [27] and T-NAS [20]. H-Meta-NAS shows in-

teresting results when compared to T-NAS and T-NAS++.

H-Meta-NAS has a much higher accuracy (+3.26% in 1-shot

and 7.94% in 5-shot) and a smaller MAC count, but uses

a greater amount of parameters. T-NAS and T-NAS++ use

DARTS cells [21]. This NAS cell contains a complex routing

of computational blocks, making it not suitable for latency

critical applications. We will demonstrate later how this de-

sign choice gives a worse on-device latency performance. We

also show how H-Meta-NAS work with FC100 and Omniglot

in Appendix.

H-Meta-NAS for diverse hardware platforms and con-
straints. In addition to using the model sizes as a constraint
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Table 4. Results of Mini-ImageNet 5-way classification. We use two decimal places for our experiments, and keep the decimal

places of cited work as they were originally reported. T-NAS uses the complicated DARTS cell [20], it has a smaller size but a

large MACs usage.

Method Size MACs

Accuracy

1-shot 5-shot

Matching Nets [30] 228.23𝐾 200.31𝑀 43.44 ± 0.77% 55.31 ± 0.73%

CompareNets [29] 337.95𝐾 318.38𝑀 50.44 ± 0.82% 65.32 ± 0.70%

MAML [10] 70.09K 57.38𝑀 48.70 ± 1.84% 63.11 ± 0.92%

MAML++ [1] 70.09K 57.38𝑀 52.15 ± 0.26% 68.32 ± 0.44%

ALFA + MAML + L2F [2] 70.09K 57.38𝑀 52.76 ± 0.52% 71.44 ± 0.45%

OFA [3] (Local Replication) + MAML++ 82.20K 33.11M 51.32 ± 0.07% 68.22 ± 0.12%

Auto-Meta [15] 98.70K - 51.16 ± 0.17% 69.18 ± 0.14%

BASE (Softmax) [27] 1200𝐾 - - 65.4 ± 0.7%

BASE (Gumbel) [27] 1200𝐾 - - 66.2 ± 0.7%

T-NAS
∗
[20] 24.3/26.5𝐾 37.96/52.63𝑀 52.84 ± 1.41% 67.88 ± 0.92%

T-NAS++
∗
[20] 24.3/26.5𝐾 37.96/52.63𝑀 54.11 ± 1.35% 69.59 ± 0.85%

H-Meta-NAS 70.28𝐾 24.09M 57.36 ± 1.11% 77.53 ± 0.77%

for H-Meta-NAS, we use various latency targets on vari-

ous hardware platforms as the optimisation target. Figure 6

shows how GPU latencies can be used as constraints. The

smaller model sizes of T-NAS do not provide a better run-

time on GPU devices (Figure 7), in fact, T-NAS based models

have the worst run-time on GPU devices due to the com-

plicated dependency of DARTS cells. We only compare to

MAML and MAML++ when running on Eyeriss due to the

limitations of the ScaleSIM simulator [26]. In our Appendix,

we provide more latency vs. accuracy plots using various

hardware platforms’ latency as constraints and observe the

same pareto dominance shown in Figure 6.

5 Conclusion
In this paper, we show H-Meta-NAS, a NAS method focusing

on fast adaption of not only model weights but also model

architectures in a many-task many-device few-shot learning

setup. H-Meta-NAS shows a Pareto dominance when com-

pared to a wide range of MAML baselines and other NAS

results. We study the effectiveness of H-Meta-NAS on a wide

variety of hardware systems and constraints, and demon-

strate its superior performance on real-hardware devices

using an orders of magnitude shorter search time compared

to existing NAS methods.
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A A more complex NAS backbone
Table 5 shows how H-Meta-NAS performs with a more com-

plicated NAS backbone. In previous experiments, we build

the NAS on top of a VGG9 backbone since it is the archi-

tecture utilised in the MAML++ algorithm. For the purpose

of having a fair comparison, we did not manually pick a

complex NAS backbone. However, we demonstrate, in this

section, that H-Meta-NAS can be applied with a more com-

plicated backbone and it shows better final accuracy as ex-

pected. The trained accuracy of searched networks using

ResNet12 reaches a 7.31% higher accuracy compared the orig-

inal VGG9 backbone. In addition, we compare the proposed

approach with state-of-the-art Metric-based meta-learning

methods [6, 35]. Although using only a single inference pass

(our method does not conduct inference runs on the sup-

port set when deployed), H-Meta-NAS shows competitive

results with SOTA Metric-based methods while having a

much smaller MACs usage (around 20×).

B Search complexity and search time
In Table 6, we show a comparison between H-Meta-NAS and

various NAS schemes in the many-task many-device setup.

Specifically, we consider a scenario with 500 tasks and 10

different hardware-constraint paris. Our results in Table 6

suggest that H-Meta-NAS is the most efficient search method

because of its low search complexity.

C Details of VGG9 and ResNet12 backbones
Table 7 and Table 8 show the NAS backbones of H-Meta-NAS.

Clearly the ResNet-basedNAS backbone is significantlymore

complicated. The kernel size search space is {1, 3, 5}. The
channel expansion search space is {0.25, 0.5, 0.75, 1, 1.5, 2, 2.25}
for the VGG-basedNAS backbone but {0.25, 0.5, 1, 1.5, 1.75, 2}
for the ResNet-based backbone. The reason for the mod-

ification in search space is because the GPU RAM limi-

tation does not support an expansion size of 2.25 on the

ResNet-based backbone. The activation search space con-

tains {[′𝑟𝑒𝑙𝑢 ′,′ 𝑒𝑙𝑢 ′,′ 𝑠𝑒𝑙𝑢 ′,′ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ′,′ 𝑟𝑒𝑙𝑢6′,′ 𝑙𝑒𝑎𝑘𝑦𝑟𝑒𝑙𝑢 ′}.

D Tuning the decay process in pre-training
strategy

As mentioned in Section 3.3 in the paper, we apply a pro-

gressive shrinking strategy to pre-training. We decay the

probability of picking the largest sub-network gradually. Re-

call that the architectural sampling process 𝛼 ∼ 𝑝 (A) will
pick the largest network with a probability of 𝑝 , and ran-

domly pick a sub-network with a probability of 1 − 𝑝 . We

apply an exponentially decay strategy to 𝑝:

𝑝 = 𝑝𝑒 + (𝑝𝑖 − 𝑝𝑒 ) × 𝑒𝑥𝑝 (−𝛼 × 𝑒 − 𝑒𝑠
𝑒𝑚 − 𝑒𝑠

)) (5)

𝑝𝑒 and 𝑝𝑖 are the end and initial probabilities. 𝑒 is the current

number of epochs, and 𝑒𝑠 is the starting epoch of applying

this decaying process. 𝛼 determines how fast the decay is.

In our experiment, we pick 𝑝𝑖 = 1.0 and 𝑒𝑠 = 30, because

the super-net reaches a relatively stable training accuracy at

that point. We then start the decaying process, and evaluate

different values of 𝛼 in Table 9. The averaged accuracy is

averaged across 100 randomly picked sub-networks on the

T𝑣𝑎𝑙 tasks. Based on these results, we picked 𝛼 = 5 for our

later experiments.

E Adaption algorithm and the
hyper-parameter choices

Algorithm 1 details the adaption algorithm. In the 𝑀𝑢𝑡𝑎𝑡𝑒

function, each architecture is ranked with the averaged loss

across all sampled tasks, and 10% of the architectures with

the lowest loss values are then used to perform a classic

genetic algorithmmutation [31]. The mutation will allow the

top-performing architectures to have two randomly picked

architectural choices being modified to another choice that

is not the original one. The mutation function considers the

original pool of architectures (A) and their averaged loss

values (𝐿𝑎). The cost of each architecture can be computed

by the pre-build hardware-specific hash-table 𝐻𝑡 (A). We

then only mutate the subset in A that their hardware cost

has satisfied the constraints {A|A ∈ A ∧ 𝐻𝑡 (A) ≤ 𝐶}.
The mutation is to randomly pick two options in the entire

architectural space and change them to other choices that

are different from the original.

Algorithm 1 The adaption algorithm

Input:𝑀 , 𝑃 , 𝐶, 𝐻𝑡

A = 𝐼𝑛𝑖𝑡 (𝑃) {Initialise a set of architectures with a size of

𝑃 }

for 𝑖 = 0 to𝑀 − 1 do
𝐿𝑎 = ∅
T𝑠 ∼ 𝑝 (T𝑣𝑎𝑙 ) {Obtain a subset from the validation task

set}

for A ∈ A do
𝐿𝑡 = ∅
for T ∈ T𝑠 do
𝑙 = L(T ,A) {Compute loss}

𝐿𝑡 = 𝐿𝑡
⋃{𝑙}

end for
𝐿𝑎 = 𝐿𝑎

⋃{𝑚𝑒𝑎𝑛(𝐿𝑡 )} {Collect averaged loss values

across all tasks}

end for
A = 𝑀𝑢𝑡𝑎𝑡𝑒 (A, 𝐿𝑎, 𝐻𝑡 ,𝐶) {Mutate the architectures

based on hardware constraints}

end for
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Table 5. Applying H-Meta-NAS to different NAS backbones/algorithms for the Mini-ImageNet 5-way 1-shot classification.

Method Network Backbone Inference Style Size MACs Accuracy

MAML [10] VGG-based Single Pass 70.09𝐾 57.38𝑀 48.70 ± 1.84%

MAML++ [1] VGG-based Single Pass 70.09𝐾 57.38𝑀 52.15 ± 0.26%

Meta-Baseline [6] ResNet-based Multi Pass 12.44𝑀 56.48𝐺 63.17 ± 0.23%

DeepEMD [35] ResNet-based Multi Pass 12.44𝑀 56.38𝐺 65.91 ± 0.82%

H-Meta-NAS VGG-based Single Pass 70.28𝐾 24.09𝑀 57.36 ± 1.11%

H-Meta-NAS ResNet-based Single Pass 70.62𝐾 28.19𝑀 64.67 ± 2.03%

Table 6. Comparing the NAS search complexity with 𝑁 tasks,𝐻 hardware platforms and𝐶 constraints. Search time is estimated

for a deployment scenario with 500 tasks and 10 hardware-constraint pairs, estimation details are discussed in Appendix.

Method Style Hardware-aware Search complexity Search time (GPU hrs)

DARTS [21] Gradient-based, single task No O(𝑇𝐻𝐶) ≈ 10
6

Once-for-all [3] Evolution-based, single task Yes O(𝑁 ) ≈ 10
4

TNAS & TNAS++ [20] Gradient-based, multi task No O(𝐻𝐶) ≈ 10
3

H-Meta-NAS Evolution-based, multi task Yes O(1) 40

Table 7. Details of the VGG9 NAS backbone

Layer Name Base channel counts Stride

Layer0 64 2

Layer1 64 2

Layer2 64 2

Layer3 64 2

Table 8. Details of the ResNet12 NAS backbone

Layer Name Base channel counts Stride

Block0_Layer0 32 2

Block0_Layer1 32 1

Block0_Layer2 32 1

Block1_Layer0 64 2

Block1_Layer1 64 1

Block1_Layer2 64 1

Block2_Layer0 128 2

Block2_Layer1 128 1

Block2_Layer2 128 1

Block3_Layer0 256 2

Block3_Layer1 256 1

Block3_Layer2 256 1

Table 9. Tuning the decay factor 𝛼 for pre-training on Mini-

ImageNet 5-way 1-shot classification. Accuracy is averaged

across 100 randomly picked sub-networks.

𝛼 0.1 0.5 5 10 50

Avg Accuracy 0.424 0.4145 0.5464 0.5323 0.4423

F H-Meta-NAS search configurations and
hardware simulation

We mostly follow the experiment setup in MAML++ [1]. In

the pre-training stage, we train for 100 epochs, each epoch

consists of 500 iterations. We also pick 600 tasks to be valida-

tion tasks. In the adaption stage, we randomly sample from

the validation set, and pick 16 tasks to build a data slice for

the architectures to traverse. In the final re-training stage

of a searched architecture, we follow the strategy used in

MAML++ [1]. We then introduce the detailed special config-

urations for the datasets:

• Omniglot: We randomly split 1200 characters for train-

ing, and the rest is used for testing. The images are

augmented with randomised rotation of multiples of

90 degrees.

• Mini-ImageNet: All images are down-sampled to 84 ×
84.

We use the ScaleSim framework [26] for simulating the

Eyeriss [7] accelerator. ScaleSim is an open-source cycle-

accurate CNN simulator. The simulator has certain limita-

tions with respect to the DRAM simulation, it could be ad-

vanced with an external DRAM simulator but will cause

a large run-time. So we kept the original setup and the

DRAM simulation would report a read/write bandwidth

requirements. For simplicity, we assume these DRAM re-

quirements are met. In addition, it is a well-known fact that

cycle-accurate simulators are slow to execute. Due to this rea-

son, we only launched the MAML and MAML++ networks

in the ScaleSim simulator.

G Additional results on Omniglot
Table 10 displays the results of H-Meta-NAS on the Omniglot

20-way 1-shot and 5-shot classification tasks. We match the
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Table 10. Results of Omniglot 20-way few-shot classification. We keep two decimal places for our experiments, and keep the

decimal places as it was reported for other cited work.
∗
reports a MAML replication implemented by Antoniou et al.[16].

Method Size MACs

Accuracy

1-shot 5-shot

Siamese Nets [16] 35.96𝑀 1.36𝐺 99.2% 97.0%

Matching Nets [30] 225.91𝐾 20.29𝑀 93.8% 98.5%

Meta-SGD [19] 419.86𝐾 46.21𝑀 95.93% ± 0.38% 98.97% ± 0.19%

MAML [10] 113.21𝐾 10.07𝑀 95.8% ± 0.3% 98.9% ± 0.2%

MAML
∗
(Replication from [1]) 113.21𝐾 10.07𝑀 91.27% ± 1.07% 98.78%

MAML++
∗
[1] 113.21𝐾 10.07𝑀 97.65% ± 0.05% 99.33% ± 0.03%

MAML++ (Local Replication) 113.21𝐾 10.07𝑀 96.60% ± 0.28% 99.00% ± 0.07%

H-Meta-NAS 110.73K 4.95M 97.61 ± 0.03% 99.11% ± 0.09%

size of H-Meta-NAS to MAML and MAML++ for a fair com-

parison. H-Meta-NAS outperforms all competing methods

apart from the original MAML++. MAML++ uses a special

evaluation strategy, it creates an ensemble of models with

best validation-set performance. MAML++ then picks the

best model from the ensemble based on support set loss and

report accuracy on the query set. We then locally replicated

MAML++without this trick, and show that H-Meta-NAS out-

performs it by a significant margin (+1.01% on 1-shot and

+0.11% on 5-shot) with around half of the MACs (4.95𝐺 com-

pared to 10.07𝐺).

H Additional results on FC100
In Table 11, we further demonstrate the effectiveness of the

proposed H-Meta-NAS on the FC100 dataset. T-NAS did not

report their model sizes on this task, and our results suggest

that H-Meta-NAS achieves the best accuracy on both the

1-shot and 5-shot setups.

Table 11. Results of FC100 5-way few-shot classification. We

keep two decimal places for our experiments, and keep the

decimal places of cited work as they were originally reported.

Method Size

Accuracy

1-shot 5-shot

MAML 70.09𝐾 38.1 ± 1.7% 50.4 ± 1.0%

MAML++ 70.09𝐾 38.7 ± 0.4% 52.9 ± 0.4%

T-NAS - 39.7 ± 1.4% 53.1 ± 1.0%

T-NAS++ - 40.4 ± 1.2% 54.6 ± 0.9%

H-META-NAS 55.52𝐾 43.29 ± 1.22% 56.86 ± 0.76%

I T-NAS baseline results
Wenotice themodel sizes of some baselinemodels (e.g.MAML

and MAML++) reported in the original TNAS paper [20] are

different from our results in Table 3. We calculated the model

sizes of these baselines using their official open-sourced im-

plementations. T-NAS did not provide an implementation

of their mentioned baselines in their official repository, so

we cannot replicate their model size numbers. We have con-

tacted the T-NAS authors regarding this issue.

J Search time estimation
Due to the limited computing facilities available, we estimate

the search time of DARTS [21], Once-for-all [3] and T-NAS

[20] in a multi-task multi-device setup. We take the search

time reported in the original publications and multiply them

by the appropriate scaling factors. For DARTs, we take the

search time (4 GPU days = 96 GPU hours) and multiply it

by 𝐻 × 𝑇 = 5000. We additionally assume a linear scaling

relationship between search time and input image sizes, so

we multiply the total search time by
84×84
32×32 , this gives us in

total a search time of around 10
6
. We perform the same

estimation for Once-for-all [3] and T-NAS [20].

K Latency-aware optimisation on more
hardware platforms

In addition to using the model sizes as a constraint for H-

Meta-NAS, we use various latency targets on various hard-

ware platforms as the optimisation target. Figure 8 shows

how GPU latencies can be used as constraints. T-NAS and

T-NAS++ show a better performance on the size-accuracy

plot in Figure 8. The smaller model sizes of T-NAS do not

provide a better run-time on GPU devices (Figure 7), in fact,

T-NAS based models have the worst run-time on GPU de-

vices due to the complicated dependency of DARTS cells.

Figure 13 illustrates the performance of H-Meta-NAS on dif-

ferent CPU devices and an ASIC hardware. The details of

these hardware are described in the main paper. In Figure 13,

H-Meta-NAS shows a better Pareto-frontier performance

compared to a range of baselines and searched models. We

only compare to MAML and MAML++ when running on

Eyeriss due to the limitations of the ScaleSIM simulator [26].

In our Appendix, we provide more latency vs. accuracy plots
using various hardware platforms’ latency as constraints and

observe the same pareto dominance shown in Figure 13. Our
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Figure 9. Targeting an ASIC accelerator
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Figure 10. Targeting a mid-end CPU
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Figure 11. Targeting a low-end CPU

0 10000 20000 30000 40000
Inference Latency on Raspberry Zero (ms)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

Figure 12. Targeting an IoT device

Figure 13. Applying H-Meta-NAS with ASIC and CPUs as

targets.

results in Figure 13 demonstrate that H-Meta-NAS consis-

tently generates more efficient models compared to various

MAML-based methods.
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Figure 7. Targeting model sizes

Figure 8. Applying H-Meta-NAS with model sizes as opti-

misation targets.

L License of the assets
In our work, we utilised the following datasets/library/code:

Table 12. Licenses of used assets.

Dataset/algorithm/lib names License

The Omniglot Dataset MIT License

The Mini-ImageNet Dataset MIT License

The FC100 Dataset Apache V2 License

Pytorch-Meta MIT License

MAML++ MIT License
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