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ABSTRACT
Filter pruning is one of the most effective ways to accelerate Con-

volutional Neural Networks (CNNs). Most of the existing works are

focused on the static pruning of CNN filters. In dynamic pruning

of CNN filters, existing works are based on the idea of switching

between different branches of a CNN or exiting early based on the

hardness of a sample. These approaches can reduce the average
latency of inference, but they cannot reduce the longest-path latency
of inference. In contrast, we present a novel approach of dynamic

filter pruning that utilizes explainable AI along with early coarse
prediction in the intermediate layers of a CNN. This coarse predic-

tion is performed using a simple branch that is trained to perform

top-k classification. The branch either predicts the output class with

high confidence, in which case the rest of the computations are left

out. Alternatively, the branch predicts the output class to be within

a subset of possible output classes. After this coarse prediction, only

those filters that are important for this subset of classes are then

evaluated. The importances of filters for each output class are ob-

tained using explainable AI. Using this concept of dynamic pruning,

we are able not only to reduce the average latency of inference, but

also the longest-path latency of inference. Our proposed architec-

ture for dynamic pruning can be deployed on different hardware

platforms.
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1 INTRODUCTION
Deep Neural Networks (DNNs) have achieved rapid success in

many image processing applications, including image classifica-

tion [10, 11, 15] image segmentation [2, 26], object detection [9],

etc. The key ingredients in this success of DNN have been the

usage of deeper networks and a large amount of training data.

However, as the network gets deeper, the model complexity also
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increases rapidly. The training of DNNs can be carried out on high-

performance clusters with Graphics Processing Unit (GPU) accel-

eration; however, for implementing these networks on hardware,

the complexity of the DNNs needs to be reduced. This includes de-

creasing the memory requirements, energy consumption, latency,

or throughput of the implementation of DNNs on the hardware.

Pruning is one of the main techniques that are utilized for reduc-

ing the complexity of DNNs. DNN Pruning refers to removing the

undesired parameters of a DNN that have little influence on the

output of the neural network [7, 17]. This leads to fewer Multiply-

Accumulate Operation (MAC) operations and fewer Number of

Parameters (NPs). Pruning can be neuron pruning, filter pruning,

weight pruning, and layer pruning. In neuron pruning, individual

neurons are removed, i.e., all the incoming and outgoing connec-

tions to a neuron are also removed [30]. In filter pruning, CNN

filters are removed [19]. In layer pruning, some of the layers can

also be pruned [3]. Weight pruning is used synonymously for un-

structured pruning, where the redundant weights are set to zero.

The two fundamental objectives for pruning the model are: (1) re-

ducing the memory by lowering the NPs and reducing the latency

and energy consumption of the computation by reducing the num-

ber of MACs. These two objectives are often conflicting in a DNN

because the MACs are concentrated in the lower layers of a typical

image classification network and the NPs are concentrated in the

higher layers of a typical image classification network.

Pruning can be structured or unstructured. In structured pruning,

the filters and weights are eliminated by removing all their input

and output connections, and this means that no additional compi-

lation techniques or platform-specific optimization is required to

obtain the gain on the target hardware in terms of reduction in the

size of the model or reduction in the inference time of a sample.

This is because the whole model structure is changed.

In unstructured pruning, the unimportant filters or weights are

set to zero, and a compiler utilizes these zeros to skip some computa-

tions, thereby decreasing the inference time. Unstructured pruning

has an additional cost in terms of compilation effort or computa-

tional effort in order to exploit the irregular sparsity. Typically,

unstructured pruning provides a higher pruning ratio as compared

to structure pruning.

Network pruning can also be classified in terms of static pruning
and dynamic pruning. In static pruning, the parameters of a DNN are

removed permanently, while in dynamic pruning, the parameters of

a DNN are not removed permanently. Instead, they are selectively

used for computation based on the input to a DNN. A DNN can be

pruned using static pruning, thereby reducing MACs and NPs, and

then the same DNN can be dynamically pruned as well.
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In [8], the authors surveyed dynamic neural networks. They di-

vided dynamic networks into three main categories: (1) instance-
wise dynamic models that process each input sample or instance

with data-dependent architectures or parameters, (2) spatial-wise
dynamic networks that conduct adaptive computation with respect

to different spatial locations of image data, and (3) temporal-wise
dynamic models that perform adaptive inference along the temporal

dimension for sequential data such as videos and texts.

Our work proposed in the following falls into the category of

instance-wise dynamic models. Within this category, the two types

of dynamic networks that are relevant to our work are (1) dynamic
depth models and (2) dynamic width models. In dynamic depth mod-

els, the sample could be predicted earlier in a network. Works such

as [32] utilize this strategy. That strategy is based on the principle

that an easier sample in a dataset can be predicted earlier within a

network than a hard sample.

In contrast to dynamic depth models, the dynamic width models

change the number of filters or channels of a CNN based on the

input sample. In [21], the authors utilize reinforcement learning for

training an agent that judges the importance of each convolutional

kernel and conducts channel-wise pruning conditioned on different

samples such that the network is pruned more when the sample is

easier. Their work utilizes the hardness of sample for the dynamic

behavior in a DNN, whereas our work utilizes coarse prediction.

Most similar to our work is [23], in which the authors proposed

a Learning Kernel Activation Module (LKAM), which is able to dy-

namically activate or deactivate a subset of filter kernels depending

upon the input image content during the inference phase. Their

method requires a bank of 1x1 convolutional kernels followed by

average pooling and a sigmoid function in order to choose which

filter kernels in a layer will be activated.

Our work is unique in this regard that in addition to classifying

easy samples earlier, we utilize an intermediate branch to perform

a coarse prediction. The lower layers of a CNN output simpler

features, while the higher layers output more categorical features

that correlate with a specific class. In higher layers, different filters

output features specific to various classes. The concept behind

our proposed dynamic pruning is to perform a coarse prediction.

Then based on this coarse prediction, we select the CNN filters

only relevant to specific classes. Here, Explainable AI allows us to

obtain filter importances relative to specific classes. Our approach

allows us to reduce the average latency as well as the longest-path

latency of inference while keeping the overhead low and hardware

implementation easy.

Typically, the pruning for image segmentation networks is more

challenging as compared to image segmentation networks. The

dynamic pruning of image segmentation networks has minimal

impact on the performance of the network as compared to the static

pruning and is, therefore, better suited.

1.1 Contributions
Our contribution can be summarized in the following points:

• We propose a novel method for dynamic pruning that utilizes

early exit along with early coarse prediction and explainable

AI.

• The early coarse prediction branch is trained using deep top-

k loss. If the branch predicts a sample with high confidence,

the prediction is made. Otherwise, coarse prediction is ob-

tained, thereby restricting the possible output to be within a

subset of classes.

• The coarse prediction is used to dynamically select only the

CNN filters relevant for those classes.

• The filters relevant for all output classes are obtained offline

using explainable AI. At run time, only ranking of filters is

performed.

• The dynamically pruned model is trainable and easily de-

ployable on the target platform. Our approach can be used

for both image classification and segmentation use cases.

2 BACKGROUND
In this section, we briefly describe some of the concepts that are

utilized in our work.

2.1 Ranking Criteria for Pruning
One of the most essential tasks in filter pruning is to rank the

filters based on their importances. The importance of a filter can be

obtained locally within a layer or it can be obtained globally within

a network. Some ranking criteria for pruning are as follows:

Magnitude-based metrics. These methods utilize ℓ1-norm and

ℓ2-norm of the model weights and have been shown to work rea-

sonably well for general cases in works such as [20] and [12].

Loss-preservation-based metrics. These measures determine the

effect of removing a set of parameters on model loss, for example,

first-order Taylor decomposition has been used for this purpose by

[22].

XAI-based metrics. As described in [33], explainable AI (XAI)
seeks to explain why a neural network produces the output that it

does for the input it gets. Explanations of DNNs can be of different

types such as explaining which neurons are most sensitive (saliency

methods), which neurons have the most effect on output, which

input excites which neurons (signal methods), etc. For example,

explainable AI has been used to guide the quantization and pruning

of DNNs [28].

Saliency methods explain the decision of a neural network by

assigning values that reflect the importance of input components in

their contribution towards the output. These methods can be used

to obtain the importance of both the features and the weights. Some

of the methods in this category are, for example: DeepLift [29], Con-

ductance [5], IntegratedGradients [31], etc. We choose DeepLIFT

as our work is not aimed at comparing different explainable-AI

methods specifically, rather it utilizes them in a novel pruning

strategy. We choose DeepLIFT also due to its robustness and less

computational requirements. One of the most attractive aspects

of explainable AI-based algorithms is that they provide scores of

different filters respective to each output class, which makes it

possible for these methods to be utilized in our dynamic pruning

architecture.

DeepLIFT. In [29], the authors propose a method for decompos-

ing the output prediction of a neural network on a specific input by
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backpropagating the contributions of all neurons in the network

to every feature of the input. DeepLIFT compares the activation

of each neuron to its reference activation and assigns contribution

scores according to the difference. The choice of reference activa-

tion is important for the algorithm’s outcome, and it often requires

domain-specific knowledge. To specify a reference activation, we

must understand the intuition behind the DeepLIFT algorithm. It

compares the effect of the features to a baseline of what the model

would predict when it cannot see the features. Therefore, a good

reference activation for MNIST [16] is an all-black image. Mathe-

matically, the DeepLIFT algorithm works as follows: Let 𝑡 represent

some target output neuron of interest and let 𝑥1, 𝑥2, . . . , 𝑥𝑛′ rep-

resent some neurons in some intermediate layer or set of layers

that are necessary and sufficient to compute 𝑡 . Let 𝑡0 represent

the reference activation of 𝑡 . The quantity Δ𝑡 is defined as the

difference-from-reference, that is Δ𝑡 = 𝑡 − 𝑡0. DeepLIFT assigns

contribution scores 𝐶Δ𝑥𝑖Δ𝑡 to Δ𝑥𝑖 , where 𝐶Δ𝑥𝑖Δ𝑡 can be thought

of as the amount of difference-from-reference 𝑡 that is attributed

to the difference-from-reference of 𝑥𝑖 . Δ𝑡 is the DeepLIFT score,

which can be represented as follows:

DL(𝑡, 𝑥) = Δ𝑡 =
𝑛′∑︁
𝑖=1

𝐶Δ𝑥𝑖Δ𝑡 (1)

2.2 Obtaining filter importances from
explainable AI algorithms

The explainable AI methods take a sample of a dataset as input

and output sensitivity maps instead of activations/feature maps.

These sensitivity maps have the same dimensions as the feature

maps. Let Ω be a set of all indices of all feature map elements of

all layers of a neural network, 𝐼 (𝑚,Ω) be the importances of all

feature map elements of the𝑚𝑡ℎ
sample from the validation set.

Then we can define the total feature map importance as the average

of importances obtained from𝑀 samples:

𝐼 (𝜃 ) = 1

𝑀

𝑀−1∑︁
𝑚=0

𝐼 (𝑚,𝜃 ) (2)

where 𝑀 is the number of samples used by the XAI method for

obtaining the importances.𝑀 varies depending upon the dataset,

its typical value is 1–2% of validation samples for CIFAR10. The

relation of the DeepLIFT score to importance is that for a neuron

𝑡 in a given DNN 𝜃 with predecessor neurons 𝑥 , the DeepLIFT

score is denoted as 𝐷𝐿(𝑡, 𝑥). The importance 𝐼 of the DNN for each

sample𝑚 is 𝐼 (𝑚,𝜃 ) = 𝐷𝐿(𝑡1, 𝑥𝑡1 ), ..., 𝐷𝐿(𝑡𝑛, 𝑥𝑡𝑛 ), where 𝑡1, . . . , 𝑡𝑛
are neurons of the DNN.

These sensitivity maps can be converted into the importances

of the filter weights using different methods, such as the following

two;

ℓ1-norm criteria. We can take the ℓ1-norm of the sensitivity map.

For example, for a 𝑑 × 𝑑 convolutional kernel, and for each sample

𝑚 ∈ 𝑀 , the explainable AI method outputs a sensitivity map 𝑂

of height 𝐻 and width𝑊 . The sensitivity of the weights of this

convolutional kernel is given by:

𝑊 −1∑
𝑤=0

𝐻−1∑
ℎ=0

|𝑂𝑤,ℎ |
/
(𝐻 ×𝑊 ).

Max-Min criteria. We can take also get importances by subtract-

ing the min from the max importances. This is useful in DeepLIFT

which also outputs negative importances to indicate pixels that

negate a class. This will be given by :

𝑊 −1∑
𝑤=0

𝐻−1∑
ℎ=0

max(𝑂𝑤,ℎ) −min(𝑂𝑤,ℎ)
/
(𝐻 ×𝑊 ).

2.3 Early Exit of CNNs
In early exit CNNs, a number of exit blocks are placed within con-

volutional layers [18, 32]. Each exit block consists of a confidence

branch and a prediction branch. The prediction branch makes the

prediction and the confidence branch outputs the confidence score

of the prediction. The branches utilize average pooling followed by

a linear layer, which keeps the computational overhead low. The

prediction branch utilizes the softmax functionwhile the confidence

branch utilizes the sigmoid function to generate the output.

For a neural network represented by parameters 𝜃 , the output

vector of the exit branch can be written as 𝑦 = 𝐹 (𝑥, 𝜃 ), where 𝑥 is

the input image, 𝑦 is the input to a softmax function, and its output

can be defined as:

softmax(𝑦𝑖 ) =
exp(𝑦𝑖 )∑
𝑗 exp(𝑦 𝑗 )

, (3)

where 𝑖 indicates the index of the predicted class and 𝑗 indicates the

index of other output classes. Finally, the output of the confidence

branch can be defined as:

𝜎 (𝑦𝑖 ) =
1

1 + exp(𝑦𝑖 )
. (4)

If 𝜎 (𝑦𝑖 ) is higher than a certain threshold, the model exits at the

early exit branch. The threshold 𝑡𝑐 can be easily obtained using the

validation dataset.

2.4 Deep top-k loss function
In addition to the early exit, we propose a coarse prediction, and

performing this optimally is important for our dynamic pruning

approach. Formally speaking, we need to train the branch using

top-k classification. For this purpose, we utilize the loss function

proposed in [1]. As the authors formulate the problem, the top-k

classification can be performed with DNNs trained with the cross-

entropy loss. For example, the state-of-the-art models trained with

cross-entropy loss yield successful results for top-5 error, even

though the cross-entropy loss is not tailored for the top-5 error

minimization. However, in case of a limited amount of data or noisy

data, minimizing with cross-entropy loss does not work as well.

Our idea of performing top-k prediction in the intermediate lay-

ers of a DNN is similar in the sense that the input to the coarse

prediction branch is noisy, based on which the branch has to be

trained to perform top-k prediction. The authors of [1] take inspira-

tion from multi-class Support Vector Machines (SVMs) and create a

margin between correct top-k prediction and incorrect predictions.

Another contribution of the work in [1] is to smoothen the loss

with a temperature parameter. This allows smooth gradients and

better training under the assumption of noisy data. The work can

be followed for exact derivation of the deep top-k loss function.

3 PROPOSED ARCHITECTURE
A schematic of our proposed dynamic pruning architecture is shown

in Figure 1. We describe its components in the following.
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Figure 1: Schematic diagram of our dynamic pruning architecture.

3.1 Early Exit (EE) Confidence
The EE block performs a top-1 prediction along with computing

a confidence measure. If the confidence measure is higher than a

threshold, then this top-1 prediction is considered the final output.

The EE confidence block consists of an average pooling layer fol-

lowed by a linear layer with a sigmoid function as activation. As an

example, for VGG11 on the CIFAR10 dataset, 30% of the samples

could be predicted with higher accuracy than the overall accuracy

at the 5
𝑡ℎ

layer. So if the overall top-1 classification accuracy of

the model is 90.8% and 30% of easier samples could be predicted

at the 5
𝑡ℎ

layer with higher top-1 classification accuracy, then the

prediction is used as output.

3.2 Coarse Prediction (CP) Branch
If the EE branch exit is not taken, then a coarse prediction is per-

formed that ranks the current sample into a subset of output classes.

The CP branch consists of an average pooling layer followed by a

linear layer with a sigmoid function as activation. When training

this branch, the goal is to obtain a maximum top-k accuracy, which

can be used in the successive layers for selecting those kernels that

are important to evaluate. For example, with VGG11 on CIFAR10

dataset, we attach the coarse prediction branch after the 5
𝑡ℎ

layer

and measure top-3 and top-5 accuracy. In our experiments, training

the coarse prediction branch with a deep top-k loss function after

setting 𝑘 = 1 yields the best results. For VGG11 on CIFAR10, we

train this branch for 10 epochs with a learning rate of 0.01 using Sto-

chastic Gradient Descent (SGD) [27]. As shown in Table 1, utilizing

deep top-k loss function is significantly better for coarse prediction

than the cross-entropy loss.

Table 1: Utilizing deep top-k loss function with setting 𝑘 = 1

has significantly better performance than 𝑘 = 5.

method top-3 accuracy top-5 accuracy

deep top-k loss (𝑘 = 1) 93.10% 97.50%

deep top-k loss (𝑘 = 5) 30.24% 72.50%

cross entropy loss 62.70% 73.50%

Placing the coarse prediction branch. The placing of the coarse

prediction branch is dependent upon the constraints of accuracy,

model, and the dataset. For example, for VGG11 model with CI-

FAR10 dataset, we placed the branch at the 5
𝑡ℎ

layer using a simple

grid search. The branch is placed at each layer successively starting

from the highest convolutional layer, trained for five epochs using

deep top-k loss function and top-3 accuracy is obtained on the

validation set. If the top-3 accuracy falls below a specific threshold,

the branch is placed on the layer ahead of it. We show the differ-

ent top-3 accuracies obtained for different branch placements in

Table 2.

Table 2: Top-3 accuracies for branch placement at different
layers of VGG11.

4
𝑡ℎ

layer 5
𝑡ℎ

layer 6
𝑡ℎ

layer 7
𝑡ℎ

layer

85.7% 93.1% 94.4% 95.4%

3.3 XAI Dynamic Pruner
This block stores the XAI-based importances of the layers to be

pruned. The importances are obtained offline and during prediction

of the sample, the ranking of filters is done. Based on the coarse

prediction, the XAI dynamic pruner selects the filter kernels of

pruned convolution layers that are not pruned and uses them for

computation.

Once the coarse prediction branch is trained, the network needs

to be trained with dynamic pruning enabled. The model can be

trained for an arbitrary amount of pruning ratio. For training pur-

poses, the weights corresponding to the pruned filters are zeroed

out, which allows the model to be differentiable and the training to

occur. We name this phase soft dynamic pruning as the model thin-

ning is not carried out yet. Whereas for hardware deployment, a

hard dynamic pruning is carried out, whereby the model is thinned.

Hardware Deployment and post-deployment fine-tuning. After
the model has been trained using dynamic pruning, we proceed to

convert the model into a hardware-deployable model. For hardware

deployment, all that is needed is instead of zeroing the pruned

filters, we instantiate convolutional layers with a fewer filter kernels

and store the un-pruned kernels in buffer. Based on the coarse

prediction, the XAI Dynamic Pruner selects a subset of un-pruned

kernels from the buffer and uses them for evaluation. In terms of

overhead, our method does not reduce the memory requirement of



DyFiP: Explainable AI-based Dynamic Filter Pruning of Convolutional Neural Networks EuroMLSys’22, April 5–8, 2022, RENNES, France

the model as compared to the un-prunedmodel. However, it reduces

the latency by selectively utilizing the filter kernels. After this

phase, the output layers of the model are fine-tuned. The model is

additionally fine-tuned to recover some loss in accuracy by training

for a few epochs.

4 EVALUATION
In this section, we evaluate our approach using standard datasets

and commonly used deep learning models.

4.1 Software and Hardware
For all experiments, we used an NVIDIA Titan RTX GPU with 24

GB of memory and an Intel i7-9700 processor. The experiments

were implemented using Python [35] as programming language in

combinationwith the following software: PyTorch [24], numpy [34],

matplotlib [13], scikit-learn [25], Captum [14], PyTorchCV [4].

4.2 Metrics
For evaluation, we utilize classification accuracy, average inference

time (𝑡𝑚𝑒𝑎𝑛), longest-path inference time (𝑡𝑙𝑜𝑛𝑔) and Floating Point

Operations (FLOPs) (flops). 𝑡𝑚𝑒𝑎𝑛 is calculated by measuring the

average inference time over the entire test dataset, which includes

samples that exit early. 𝑡𝑙𝑜𝑛𝑔 is the average inference time of the

samples that do not exit early.

Discussion of complexity: We measure the additional complexity

for implementing our dynamically pruned model in reference to

the corresponding statically pruned model. We show that the com-

putational complexity is negligible for most hardware platforms.

4.3 Baseline and Reference
As reference, we use the un-pruned model in order to compare the

speedup as well as accuracy. For the baseline, we train a statically

pruned model with the same number of filters as the dynamically

pruned model. The statically pruned model is pruned using one-

shot pruning with ℓ1-norm of DeepLIFT as the ranking criteria. The

statically pruned model is useful in giving us a measure of compu-

tational overhead due to the additional branches and processing

that is incurred in dynamic pruning process.

4.4 VGG11 with CIFAR10
First, we evaluate VGG11 using the CIFAR10 dataset, that consists

of 11 layers, 8 of which are convolutional layers. The number of

filters in these 8 layers are 64, 128, 256, 256, 512, 512, 512, and 512,

respectively. We obtain a VGG11 model trained on CIFAR10 dataset.

The pre-trained un-pruned reference model has a top-1 accuracy

of 90.9% on the test dataset.

Then we proceed with our approach and first attach the early

exit and coarse prediction branches and train these branches. In this

configuration, the early exit and coarse prediction branch are placed

after the 4
𝑡ℎ

layer. The early exit branch and coarse prediction

branches are trained initially with 15 epochs with a learning rate

of 0.01 and a momentum of 0.9 using SGD. This allows us to obtain

a top-5 accuracy of around 97%, while 30% of samples can exit

the network with an accuracy of 92.3%. After training, the coarse

prediction and early exit branch, the soft dynamic pruning is turned

on and the network is trained for 30 epochs. Then the network

is converted into hardware deployable form and hard dynamic

pruning is used. After hard dynamic pruning, only the final output

layers of the network need to be fine-tuned for 15 epochs. The

number of filters in the last four layers could be reduced here

from 512 to 128. One could also employ layer sensitivities and

iterative pruning, however our goal is to demonstrate the utility of

our approach, so we pick one configuration for that purpose. The

results for the CPU-based target platform are shown in Table 3.

Table 3: Performance of our architecture on a CPU with
VGG11-CIFAR10 as the model-dataset pair.

method accuracy 𝑡𝑙𝑜𝑛𝑔 𝑡𝑚𝑒𝑎𝑛 flops

Dynamic Pruning 91.30% 2.83ms 2.65ms 161.8M

Static Pruning Baseline 89.40% 2.70ms 2.70ms 159.5M

Reference Model 90.09% 5.60ms 5.60ms 171.9M

Results on CPU. As we can observe, the accuracy of our dynami-

cally pruned model is even greater than the reference model. This

may happen when an over-parameterized model is pruned. Addi-

tionally, the static pruning baseline is useful in concluding that the

computational overhead for introducing dynamic pruning is negli-

gible. We can also observe that whereas the reduction in flops is not

significant for the pruned model, the reduction in latency 𝑡𝑚𝑒𝑎𝑛 is

about 50 %. This could be due to the reason that memory transfers

take more time and have more influence on latency as compared to

flops. The latency of the dynamically pruned model is comparable

to the static pruning baseline which shows that overhead is not

significant, however the accuracy of dynamically pruned model is

greater.

Results on GPU. We obtain the results for GPU as well, which

are shown in Table 4. The latency on GPU is reduced also here by

half, as we observed in the case of CPU as well.

Table 4: Performance of our architecture on a GPU with
VGG11-CIFAR10 as the model-dataset pair.

method accuracy 𝑡𝑙𝑜𝑛𝑔 𝑡𝑚𝑒𝑎𝑛 flops

Dynamic Pruning 91.30% 0.227ms 0.211ms 161.8M

Static Pruning Baseline 89.40% 0.220ms 0.220ms 159.5M

Reference Model 90.09% 0.447ms 0.447ms 171.9M

4.5 ResNet20 with CIFAR10
We test ResNet20 using the CIFAR10 dataset. This ResNet architec-

ture consists of three different widths; six 3×3 convolutional layers

consist of 16 filters, six other 3 × 3 convolutional layers consist

of 32 filters and last six 3 × 3 convolutional layers consist of 64

filters, while two 1 × 1 convolutional layers are identity layers and

one layer is a fully connected output layer. In this experiment, we

prune the last six layers consisting of 64 layers, reducing them to

48. The results for measurements on the CPU are shown in Table 5.

As we can see, the overhead of dynamic pruning is low and the

latency is close to the latency obtained for the static pruning base-

line, whereas the accuracy for the dynamically pruned model is

significantly higher.
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Table 5: Performance comparison on CPU with ResNet20-
CIFAR10 as the model-dataset pair.

method accuracy 𝑡𝑙𝑜𝑛𝑔 𝑡𝑚𝑒𝑎𝑛 flops

Dynamic Pruning 86.5% 2.17ms 2.13ms 34.5M

Static Pruning Baseline 78.5% 2.12ms 2.12ms 34.0M

Reference Model 94.3% 2.45ms 2.45ms 40.5M

4.6 VGG16 with CIFAR100
We test VGG16 using CIFAR100 dataset to show the application of

our approach on a dataset with a large number of classes as the

CIFAR100 dataset contains hundred output classes. The VGG16

model consists of 13 convolutional layers, one with 64 filters, three

with 128 filters, three with 256 filters and six with 512 filters. The

exit branch is placed after the 7
𝑡ℎ

layer and last six convolutional

layers are dynamically pruned, reducing the number of filters to 128.

The top-5 coarse prediction is performed at the coarse prediction

branch. The results are shown in Table 6.

Table 6: Performance comparison on CPU with VGG16-
CIFAR100 as the model-dataset pair.

method accuracy 𝑡𝑙𝑜𝑛𝑔 𝑡𝑚𝑒𝑎𝑛 flops

Dynamic Pruning 71.2% 8.14ms 7.82ms 440.0M

Reference Model 71.4% 13.20ms 13.20ms 666.3M

4.7 Comparison with state-of-the-art static
pruning

Our work is not directly comparable with state-of-the-art static

pruning approaches, as our dynamic pruning method allows for

further prunability after the static pruning has been done. In order

to demonstrate this, we utilize a VGG16 model that is statically

pruned on CIFAR10 dataset using the gate-decorator method pro-

posed in [36]. The statically pruned model contains 17, 46, 57, 71,

73, 60, 32 filters in initial seven convolutional layers respectively

and 51 filters each in the last six convolutional layers. We prune the

last six layers dynamically and reduce the number of filters from

51 to 40. In terms of inference time, this gives us a speedup of 1.33

on the CPU target.

Table 7: Performance comparison onCPUbetween statically
pruned VGG16 model for CIFAR10 dataset and dynamic
pruning applied on that statically pruned model.

method accuracy 𝑡𝑙𝑜𝑛𝑔 𝑡𝑚𝑒𝑎𝑛 flops

Dynamic Pruning 91.2% 2.67ms 2.48ms 199.9M

Reference Model 91.3% 3.33ms 3.33ms 209.75M

4.8 Evaluation on image segmentation problem
As an image segmentation problem, we train U-Net [26] model on

PASCAL VOC12 [6] dataset. The model is trained to an accuracy

of 73 %. In the case of the image segmentation problem, the coarse

prediction branch predicts the object classes present in the image.

The VOC12 dataset contains twenty object classes and a single

image contains an average of three to five object classes, which

allows dynamic pruning to be effective. U-Net follows an encoder-

decoder architecture with a bottleneck, the coarse prediction is

performed at the bottleneck, after which only the filters important

for the coarsely predicted output classes are used. Early Exit is

not feasible in the case of image segmentation because accurate

segmentation maps cannot be obtained without the decoder. The

results are shown in Table 8. The overhead of dynamic pruning

control logic is minimal in the case of image segmentation network.

This is because the FLOPs are distributed evenly in different layers.

Table 8: Performance comparison on CPU between refer-
ence model and the dynamic pruning model for U-Net on
PASCAL VOC12 dataset.

method accuracy 𝑡𝑚𝑒𝑎𝑛 flops

Dynamic Pruning 71.2% 172ms 52.53G

Reference Model 74.3% 255ms 73.53G

5 CONCLUSION AND FUTUREWORK
In conclusion, we propose a novel dynamic pruning architecture for

pruning CNN filters that utilizes explainable AI and can be deployed

on different target platforms such as CPUs and GPUs with relative

ease. It provides an impressive gain in terms of inference latency

on different platform types. To the best of our knowledge, the

idea of performing coarse prediction in intermediate layers and

utilizing explainable AI to select filters important to those classes

has not been proposed before. In comparison with existing static

pruning approaches, our architecture has the advantage that it can

be used after static filter pruning to obtain even further speedup.

In comparison with existing dynamic pruning approaches, our

approach has the advantage of being able to reduce the longest-

path inference time in addition to the average inference time.

For future work, we envision investigating for example, design

space exploration techniques for placement of the early exit and

coarse prediction branches as well as efficient utilizing of multiple

branches could be explored. The structure of the branches could

also be changed from simpler linear layers to more complicated

layers.
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