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Abstract
Microcontrollers are an attractive deployment target due to
their low cost, modest power usage and abundance in the
wild. However, deploying models to such hardware is non-
trivial due to a small amount of on-chip RAM (often < 512KB)
and limited compute capabilities. In this work, we delve into
the requirements and challenges of fast DNN inference on
MCUs: we describe how the memory hierarchy influences
the architecture of the model, expose often under-reported
costs of compression and quantization techniques, and high-
light issues that become critical when deploying to MCUs
compared to mobiles. Our findings and experiences are also
distilled into a set of guidelines that should ease the future
deployment of DNN-based applications on microcontrollers.

CCS Concepts: • Computer systems organization →
Embedded and cyber-physical systems; • Computing
methodologies → Modeling and simulation.

Keywords: microcontrollers, neural networks, compression,
quantization
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1 Introduction
Modern smartphones can run a 22-layer DNN for image clas-
sification in under 100ms [13], reaching competitive accuracy
levels on the ImageNet [8] dataset. In this work, we study
the challenges associated with the deployment of DNNs on
significantly more constrained platforms: microcontrollers
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(MCUs). We focus on the challenges which do not generally
arise in other mobile systems (e.g., smartphones), but are
central to the deployment and execution of DNNs on MCUs.

Despite the limitedmemory and compute resources,MCUs
can be an attractive target platform for some DNN-powered
applications. Battery-powered devices that perform sched-
uled or occasional event-triggered processing [9, 15] would
benefit from near-zero power use in sleep mode. Using an
off-the-shelf MCU would also significantly reduce both de-
velopment and per-unit costs. Finally, running necessary
computations on-device would also eliminate the need for
server-side processing and communication overheads.
Indeed, deploying DNNs on MCUs has become an area

of active study in the recent years [3, 23, 24, 26, 36], and
frameworks such as TensorFlow Lite Micro [7] make the
deployment relatively straightforward in certain settings.
However, the deployment of models that do not trivially fit
the limits of MCUs faces very significant difficulty in closing
the resource gap and remains an unsolved problem. In many
respects, one could say that the deployment of DNNs on
MCUs is where it used to be for smartphones back in 2015.

In this work, we study the difficulties introduced primarily
by the lack of on-chip memory along with other residual
factors. Notably, we elect to not use any of the existing MCU
supporting DNN frameworks at inference time. This bare-
metal approach allows us to make observations without in-
terference from the design decisions of any one framework.
Our core observation is that hardware-aware design choices
during training (e.g. the way quantization is done) and net-
work architecture (e.g. the size of activations in any given
layer), while important in other mobile setups, become criti-
cal when deploying to MCUs. More specifically:

• We describe challenges and opportunities of MCUs
and contrast them with mobile platforms (Section 3)

• We investigate memory hierarchy of MCUs and pro-
pose ways of mitigating the impact in latency and
energy associated to data movement (Section 5).

• We study different design choices for quantization as
a simple form of model compression (Section 6).

• We expose the deficiency of current high-level metrics
for assessing the suitability of a (compressed) model
for deploying to an MCU (Section 7).

Finally, Section 8 provides a set of deployment guidelines.

https://doi.org/10.1145/3517207.3526978
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2 Experimental Setup
Weworkwith theMobilenet_V2_0.35_128 architecturewhich
is commonly used in mobile computer vision applications
[29]. To compile our microcontroller software, we use Arm’s
gcc-arm-none-eabi-8-2018-q4-major toolchain along with the
CMSIS library and Mbed OS. We set the -O3 optimization
level in Release mode and obtain 1764 KB binaries.

2.1 Model Deployment Pipeline
Modern deep learning frameworks provide easy ways to
transfer a neural network from a training environment to a
deployment on a GPU / TPU accelerator. However, targeting
microcontrollers requires extra manual steps to work around
memory and compute limitations discussed previously. In
our experiments, we take the following steps on the host
machine to prepare the model for deployment on the device.

Simulate quantization on host.We start with a model
graph in TensorFlow [1], built using the Keras API [6], and
insert TensorFlow’s fake quantization operators after each
tensor that needs to be quantized. This allows us to fine-
tune the model with quantized weights. We use 8-bit quan-
tized tensors throughout the model with 32-bit accumula-
tors for intermediate values. This methodology was first
used in Jacob et al. [19]; we use a customized version of
tensorflow.quantize to rewrite the computation graph.

Train, quantize and  
fine-tune the model

Tensorflow model  
computation graph

Simplify the model,  
fuse layers 

Extract parameters and
prepare microcontroller

code 

TFLite model

Deploy and benchmark  
the model 

Figure 1. Model deployment pipeline: major conceptual
stages of turning a TensorFlow graph into a DNN running
on a microcontroller.

Simplify and export themodel. The computation graph
can be further simplified before deployment since the model
is expected to operate only in inference mode. Adjacent lay-
ers can be fused to reduce the number of operations andmem-
ory accesses at runtime: activations and other element-wise
operations are combined with the preceding layer, which
also enables them to operate at higher precision intermediate
values. Batch normalization layers in inference mode scale
and shift their inputs by a learned constant (one multiplica-
tion and addition) which can be achieved by weights and
biases of the preceding layer. We use a converter provided

Figure 2. Nucleo-767ZI with attached 𝜇SD card shield. This
is the board we used in all our experiments.

by TensorFlow Lite to simplify the computation graph, "fold"
batch normalization layers and produce a compact model in
the TFLite format.

Generate microcontroller code. Finally, we inspect the
serialized TFLite model (produced by the steps above or
otherwise) and generate C++ code for the microcontroller.
We leverage a custom-built library for NN computations
which contains reference implementations of operations for
uniform affine quantization and a wrapper around CMSIS-
NN for Q-format quantization. We also change the memory
layout of tensors for better locality, export weights in both
binary and code formats (for storage on SD card and flash
respectively) and statically partition the memory to avoid
memory management overhead at runtime.

2.2 Hardware Setup
We use the Nucleo-F767ZI board (see Table 1 for an overview
of its hardware specifications). To enable the deployment of
models larger than the available on-device Flash memory, we
make use of the 𝜇SD card adaptors from AdaFruit connected
over SPI. This adaptor is attached to the Nucleo boards using
pin-to-pin data and clock connections tominimise the impact
of cabling (see Figure 2). We use a 2 GB Class 4 (C4) 𝜇SD
card in all our experiments and, unless stated otherwise, the
operating frequency is set to 1 MHz (default). We use the
Monsoon HV Power Monitor to power the board at 3.3V
and sample energy consumption at 5 KHz. We rely on the
internal timers of the device to obtain latency measurements.

This setup allows us to carefully control howwe obtain our
measurements. The absolute values of metrics would differ
from a production device (due to it being more optimized),
but the relative results will still hold in the closer-to-product
implementations.
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3 Deploying Deep Neural Networks
on Microcontrollers

A typical microcontroller is comprised of a processing core,
on-chip static random access memory (SRAM) and NOR-
Flash memory, where the program code lives. It is several
orders of magnitude more resource-constrained than today’s
average smartphone, especially in terms of on-chip RAM.
In our study, we consider the family of Cortex-M microcon-
trollers from Arm. Some of these currently commercially
available MCUs are shown in Table 1.

MCUs are an attractive application platform:
Low power usage. Microcontrollers have small SRAM

chips and relatively slow cores which helps to achieve power
consumption of 5–150𝜇W/MHz, depending on the model
and input voltage.

DSP capabilities. For Cortex-M devices, the CMSIS-DSP
libraries provide highly efficient low-level implementations
of signal processing primitives, which are equally usable
for DNNs. More recently, the CMSIS-NN [22] library was
released to provide optimized kernels which leverage SIMD
instructions on supported MCUs.
Affordability. Current prices range between $0.75 per

unit for a less capable Cortex-M0 to $10 per unit for a top-tier
Cortex-M7.1 Such low prices are achieved by using simple
chip designs with very few components and employing old-
generation lithography—MCUs are often produced using the
40nm or 90nm specification [32].

Cheap on-device computation. MCUs, data movement
is the primary source of energy consumption[33]. Inter-
device data movement is costly, even when relying on low-
power close-range communication mechanisms. For exam-
ple, transmission costs using BLE or ZigBee are in the or-
der of hundreds of milliwatts [30]. Unlike displays and ra-
dios, processing cores and sensors use considerably less
power: real-time audio processing at 384KHz requires 10–
25mW [14] on a Cortex-M4; low-resolution image sensors
for object tracking consume 277𝜇W [28]. This shows that
the communication cost of offloading can exceed the compu-
tation cost itself, had it been done locally. This makes MCUs

1As catalogued by Mouser Electronics (Feb 2019) for an order of a thousand
units of just cores without development boards.

Model Processor Clock SRAM Flash FPU

F767ZI Cortex-M7 216 MHz 512 KB 2 MB ✓
F746ZG Cortex-M7 216 MHz 320 KB 1 MB ✓
F429ZI Cortex-M4 180 MHz 256 KB 1 MB ✓
F207ZG Cortex-M3 120 MHz 128 KB 1 MB ×
F091RC Cortex-M0 48 MHz 32 KB 256 KB ×

Table 1. Selected commercially available MCUs from Arm
in development STM32 Nucleo boards form factors.

an attractive deployment target for applications that do not
necessarily require low-latency or real-time processing.

3.1 Mapping DNNs to MCUs
From a computational point of view, a deep neural network
is a sequence of linear algebra operations, along with some
element-wise non-linearities, grouped together into "layers".
The deployment of neural networks to MCUs involves

deciding where the weights, biases and activations lie, how
the compute operations are scheduled and how the data gets
accessed and processed. Executing a model that does not fit
into on-chip memory could then take the following steps for
each layer in turn:

1. Load a binary blob representing the compressedweights
of the layer into RAM from the storage.

2. Revert any compression of weights, e.g. revert Huff-
man encoding or K-means clustering, as suggested
by Han et al. [10]. If the decompressed tensor does not
fit into RAM, attempt to store it in the Flash memory
or, if it fails, onto the SD card.

3. Execute the computation of the layer (inputs are as-
sumed to be already in RAM). If decoded weights were
stored in the backing storage, load them in chunks as
needed.

4. Store the result in a pre-allocated buffer in SRAM. This
will become an input to the following layer.

In order to assess how data flow impacts latency or energy
consumption, we study the costs of different types of data
movement, data formats and encoding schemes in detail.

3.2 The Challenges of MCUs
Besides model size, inference latency and energy consump-
tion, MCUs are subject to their unique set of challenges:
Working set may not fit in RAM. In the context of

DNNs, the working set of a layer is the amount of memory
needed to store its weights, biases and activations. An in-
ability to hold the working set in SRAM will significantly
deteriorate both latency and battery life. We further discuss
this in Section 4.

Datamovement is costly.Data movement is the primary
source of energy consumption on MCUs. In Section 5 we
study the costs of reading and writing DNN data to and from
SRAM, flash and 𝜇SD card.
Hidden costs. Since running a DNN on an MCU may

become an I/O-bound task, methods aimed at reducing the
number of parameters or MACs at the cost of more data
movement may actually hurt performance. Extra costs intro-
duced by such methods have been insufficiently studied in
existing literature—we discuss them further in Section 7.

4 Working Set
The working set profile of a DNN often displays significant
variation across layers. Relative to the aggregate total model
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size, it gives a richer overview of the minimum resources
needed to run a network. Figure 3 shows the working set of
the baseline MobileNet, the standard in mobile sensing. We
see that the working set exceeds the available MCU SRAM at
the 6th and the 68th layers. The latter, even though serious
is less concerning since reading from an external memory
source is much cheaper than writing to it. Thus, even though
the network fails to fit in the SRAM at two points only one
of these failures prohibits realistic deployment.
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Figure 3. Per-layer working set of MobileNet_V2_0.35.

There is a fundamental difference between those layers
whose working set sizes are close to the SRAM limit and
those with working sets at a comfortable distance from it.
An experiment in Figure 4 demonstrates the impact of extra
filters added to every layer of the baseline MobileNet. The
left panel reports the increased working set sizes. The right
panel reports the per-layer increase in forward pass latency
that resulted from this network expansion.

Figure 4. Impact of adding 32 more filters to each of the first
ten layers of MobileNet_V2_0.35.

The latency due to the added operations (green) is dwarfed
by those caused by writing out and storing off-SRAM the
excess output at layers 3, 5, and 6 (yellow) and then reading
it back at the next layer (pink). Note that layers 3 and 5 have
only write-related latency penalty, as they exceed the SRAM
size themselves but were not preceded by a layer that would
do the same and similarly layers 4 and 7 have read-only.

Relative to these impacts the other layers are affected only
marginally since the operation penalty is marginal. For this
reason we omitted layers far away from the SRAM limit.
In conclusion, when networks exceed the amount of on-

chip RAM they face a significant amount of data movement,
which, as would be further studied in the following section,
results in latency and energy penalties 2.

5 Data Movement
The data movement costs are a function of the number of
bytes to move and the position of the origin or destination
memory in the system’s memory hierarchy. MCUs often rely
on L2 SRAM chips as their main general purpose memory.
Bigger pieces of data can be stored on non-volatile memories
such as NAND-Flash based SSDs and SD cards. Accessing
these requires two to three orders of magnitude more energy
than accessing the MCU’s SRAM. SD cards are versatile for
on-the-wild deployments [14], easy to use, and work well in
compact form factors suitable for MCUs.

At inference, each MAC requires three memory reads (one
per buffer in the working set WS) and one memory write
to update the output. Having an entire high-performance
model in SRAM is not realistic. Therefore, in the worse case,
each MAC requires three 3× 𝜇SD card read accesses and one
write. To provide some context, the reference MobileNet_V2
model requires 300 million MACs per inference pass.

5.1 Implications for Inference
We evaluate the impact of: independently relying on SRAM,
on-chip Flash (NOR-Flash) and 𝜇SD card storage (NAND-
Flash), the asymmetric nature of reading/writing from/to
flash, as sectors need to be erased prior writing on them; and
the impact of the operation frequency of 𝜇SD card.
Memory hierarchy impact. We measured the latency

and energy consumed while evaluating the last layer of our
MobileNet_V2 network when weights reside in either SRAM,
on-chip Flash or external 𝜇SD card. The input to this convo-
lutional layer is a [1 × 4 × 4 × 112] tensor and the weights
are of shape [1280 × 1 × 1 × 112]. Retrieving the weights
from 𝜇SD card results in almost a two orders of magnitude
increase in latency. When weights are either in SRAM or
Flash, latency is identical when measured at a resolution of 1
ms, but energy consumption is marginally (+0.07mJ) higher
when using the weights in Flash.

2See Siu et al. [31] for a a study of domain-specific working-set trade-offs.
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Figure 5. Latency and energy costs of writing/reading 1 MB to/from on-chip flash and 𝜇SD card.

Flash re-usage impact. In this experiment we investigate
the cost of off-loading excessive working set onto the SD card.
We measure the latency and energy required to store and
read 1 MB of data in SRAM and the SD card. This is a realistic
setup as inference would be performed multiple times on the
device.Wemeasure the costs of reading/writing such amount
of data every 16 KB blocks. In Figure 5 we observe that,
while 𝜇SD card read/write is comparably costly, there is a
big disparity between the costs associated to Flash read/write
operations. Consequently, is to only worth writing to on-
chip flash during runtime if the data to be stored is planned
to be used multiple times during network inference.
Operation frequency of 𝜇SD card. From the previous

experiment, we argue that NAND-Flash (e.g. 𝜇SD card) is
preferable when needing to temporarily offload some data
from systemmemory. In this experiment we study the impact
in energy consumption that the operating frequency of the
𝜇SD card has in the overall system. We measure the energy
required to write to 𝜇SD card arrays of different dimensions,
resulting in file size ranging from 10 Bytes to 200 KB. In
our development setup, we observe power consumptions of
∼460mWwhen setting the frequency to 100KHz. Power goes
up to ∼590mWwhen operating at the highest frequency sup-
ported by Mbed OS, 25 MHz (see Figure 6). Although higher
frequencies translate into an up to 25% power drawn, the
overall energy consumed suggests that using higher frequen-
cies is more economical. We highlight with the operation
frequencies at which the writing operation results in the
least energy consumed.

6 Quantizing Neural Networks
Quantization represents model’s parameters with fewer bits
than the 32-bit used in training. The 8-bit quantization was
shown to reach comparable performance to full-precision
models [19, 20], to be deployable on off-the-shelve mid- to
low-end hardware, and to result in a direct 4× model size
reduction and up to 116× and 27.5× chip area reduction [16].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2 4 6 8 10 12 14 16 18 20 22 24
SD Frequency (MHz)

20
0

10
0

50
25

10
5

2
1

0.
5

0.
2

0.
1

Fi
le

 S
iz

e 
(K

B
)

En
er

gy
 (m

J)

10
1

10
2

10
3

10
4

Figure 6. Energy costs of writing activation arrays to the
external 𝜇SD card when varying its operation frequency.

6.1 Dimensions to Quantization
We present the three dimensions of quantization: the bit-
width, the granularity and the implementation.

Bit-width. This refers to the number of bits used to repre-
sent the weights of a neural network. 32-bits, 16-bits, 8-bits,
and 1-bit are popular options due to being well-supported
by existing hardware.

Granularity.Options include tuning the bit-width of each
weight (fine-grained quantization), setting the bit-width for
each layer or using the same precision throughout the model
(coarse-grained quantization). Intuitively, finer quantization
is more flexible and should approximate the full-precision
model better. However, it requires additional logic and book-
keeping due to the (potential) mismatch in bit-width of
layer’s operands, weights and activations. A common com-
promise is to perform layer-wise quantization [20, 25, 27, 37].

Implementation.Most common implementations are:
Q-format. It is a method that splits the 𝑛 bits representing

a real value into integer and fractional parts. It is denoted
𝑄𝑎.𝑏 , where 𝑎 is the number of bits for the integer part, 𝑏
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Figure 7. The latency (ms) and energy (mJ) of running a
quantized MobileNet_V2 network on the Nucleo-F767ZI.

those for the fractional part and, 𝑛 = 𝑎+𝑏. For 8-bit represen-
tations, 𝑛 is usually set to 7 and the 8-th bit becomes the sign
bit. Operating with Q-formatted data is well supported in
most hardware as it is an efficient method to perform opera-
tions that would otherwise require floating point hardware
support. The main overhead is keeping track of the decimal
position when performing operations in which operands
assign different number of bits for fractional or integer part.
This scenario is common in neural networks as the output
of layer 𝐿𝑖 becomes the input of layer 𝐿𝑖+1 and these are
likely to be quantized independently. The main limitation
of this quantization implementation is the fact that it homo-
geneously splits the [𝑎, 𝑏) range for 𝑄𝑎.𝑏., which becomes a
problem for long-tailed or heavily asymmetric distributions.

Affine. This implementation represents a real number
𝑟 ∈ R as the affine mapping of an integer 𝑞 using parame-
ters 𝑆 and 𝑍 . This is defined as 𝑟 = 𝑆 (𝑞 − 𝑍 ), where 𝑆 is a
FP32 value and scales the zero-centred quantized number
𝑞. This centering is performing by applying offset 𝑍 , which
is quantized to the same number of bits as 𝑞. These extra
parameters result in extra arithmetic operations during e.g.
matrix multiplication. We refer the interested reader to Jacob
et al. [19] for a detailed description. A common practice is
to learn a single {𝑍, 𝑆} pair for each layer.
Code-book. This term groups most of the compression

frameworks proposed for DNNs to date. While lossless ap-
proaches exists, such as those based on Huffman [17] codes
or Lempel-Ziv [38] (e.g. LZ77 or LZ78) algorithms, the major-
ity of these are lossy and therefore trade compression ratio
with accuracy degradation. For our study we chose a com-
bination of lossy and lossless compression and concatenate
K-means clustering and Huffman encoding on 8-bit Q-format
data. In order to operate with such data representation we
need to (1) decode (i.e. revert Huffman encoding) and (2)
de-cluster (i.e. revert K-means) the weights.

6.2 Quantized DNNs for MCUs
We measure the impact in performance of each of the quan-
tization implementations on a MobileNet_V2_0.35 network.
The results, as shown in Figure 7, verify that the simplicity

of a Q-format implementation results in lower latency, spe-
cially when exploiting SIMD operations, compared to the
alternatives. Code-book quantization underperforms signif-
icantly due to the latency needed to unpack its codebook.
The affine quantization, similarly, requires longer processing
times. Finally, we observe that, regardless of the quantization
implementation, there is a direct correlation between latency
and energy consumption.

7 The Weakness of High-level Metrics
Inherent to all quantization implementations presented in
Section 6 is the need for additional parameters in order to
give meaning to the quantized weights. These parameters
are decimal point location, in the case of Q-format quantiza-
tion; and scale and zero point values, for affine quantization.
They often represent a negligible portion of the total model
size and their existence will not therefore constrain the de-
ployability of such models. However, their introduction does
translate into an increase in latency, particularly in the case
of affine quantization, as it was observed in Figure 7.
Code-book approaches, which have been the predomi-

nant form of model compression [10, 18, 35], suffer from
additional overheads. These overheads come in the form of
frequent lookups to interpret their weight encoding. These
costs are hidden from users because: (1) they rarely get re-
ported when a new compression framework is presented or
when compared against the previous state of the art; and (2)
their impact during model inference in platforms where the
fully uncompressed model does not fit in memory, as it is
likely to happen in MCUs, has not been studied.
Relying on high-level metrics such as model size or total

number of (high-level network architecture) MACs needed
for model inference could misslead the choice of an architec-
ture given an application and target platform. To illustrate
why these costs are relevant to the scenario of deploying
DNNs on MCUs we use as an example the SqueezeNet archi-
tecture compressed with the Deep Compression [10] frame-
work. As reported Iandola et al. [18], this network results in
0.47MB in model size while maintaining the same accuracy
as AlexNet [21] on ImageNet [8]. The SqueezeNet network
is 510× smaller than AlexNet. A sub-megabyte model such
as this one would fit in all but the most constrained MCU
from Table 1. However, this compact model-representation
cannot be used directly to classify an input. It needs to be
unpacked first. This process will transform the model from
the initial 0.47MB up to 4.8MB, which no longer fits in mem-
ory or flash and therefore will result in a significant impact
in both latency and energy consumption.

We show in Figure 8 that high-level metrics alone might be
misleading when assessing the suitability of a network or a
compression framework foran MCU. We show that the stress
in memory due to the sizes of the input and output tensors
of a layer is far greater than that resulting from the tensors
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Figure 8. Left: per-layer cumulative memory usage of MobileNet_V2. Right: WS, MACs and Latency vs additional layer filters.

containing the weights (which is precisely what the model
size metric measures). We also show that, linearly increasing
the model size, does not translate necessarily into a linear
increase in latency. We can observe how other parameters
of the hardware (in this case the amount of usable SRAM)
significantly limits the throughput of the application when
exceeding the maximum working set limit.

8 Guidelines for MCU ML Developers
MCUs, just as mobile devices, are an appealing application
platform. They are highly energy efficient, affordable, and
are virtually omnipresent with trillions presently deployed.
However, their resource limitations are a muchmore extreme
compared to mobile devices. These additional constraints
have to be carefully considered at design stage, making the
complexity of moving DNNs frommobile platforms to MCUs
comparable to the difficulty experienced withmigratingmod-
els from server to mobile platforms.

Mobile devices led the way on deploying deep neural net-
works (DNN) in constrained setups. They are limited in RAM
size, Flash size, and Op-s per second relative to DNN’s origi-
nal server platforms. But, they offer better setup (hardware
cost) as well as operation (energy consumption) affordability.
Moreover, easier accessibility of mobile devices allows wider
access to the services DNNs can offer.
Developers can leverage existing tools and techniques

aimed at mobile devices to get most of the way to a successful
deployment on an MCU. However, to make the model run
at reasonable levels of accuracy, power use and latency, the
following points have to be considered:

Working set size. Due to little amount of on-chip mem-
ory in MCUs, the working set size becomes the bottleneck,
forcing largemodel to page tensors to external storage. Avoid-
ing interaction with external storage will improve overall
inference latency and power consumption.

Data movement. Data movement makes up a significant
proportion of overall energy consumption on an MCU. This

can quickly exceed the amount of energy consumed by com-
pute operations: incredibly, moving 1 byte across memories
can equate to many floating point operations. Minimising
the amount of data movement should be one of the primary
considerations for a model designer.
Quantization. Quantization is an attractive technique

to significantly reduce the model and working set sizes. It
may be a required step if the target device does not have
DSP circuitry and hence does not support floating point
operations. The methods offer different trade-offs between
representation accuracy and bookkeeping and implementa-
tion complexity. Using a natively supported bit-width would
allow to leverage SIMD on supported devices.

Beware of misleading metrics. Commonly, lightweight
model design and compression optimize for the total model
size and multiply-accumulate operations. While these met-
rics allow for meaningful comparisons on server and mobile
platforms, on MCUs they can hide data movement costs.

9 Related Work
This paper is best seen in two contexts. The first is the hard-
ware context in which it is closely related to the literature on
hardware acceleration. The second is the modelling context
which benefits from the paper’s lessons learned.

In the hardware space, a close cousin of the here-deployed
MCUs are the application-specific integrated circuits (ASICs)
and the field-programmable gate arrays (FPGAs). Researchers
have, in the recent years, made a considerable progress to-
wards running deep models on both of them.

ASICs: as their name suggests, these are fixed pieces of
silicon fully-optimized for a very specific task. Consequently,
they can’t be reprogrammed. Cavigelli et al. [5], proposed
the first such accelerator aimed at running convolutions. It
avoided the problem of fitting a deep model by focusing on
the simpler issue or fitting a single convolution layer on the
hardware. This method was then improved on and finally
measured on silicone to provide up to 196 GOp/s on 3.09
mm2 in UMC 65-nm technology and to achieve a power
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efficiency of 803 GOp/s/W [4]. Andri et al. [2] argued that
this performance, impressive as it may be for a first-one-
ever, fell short in its energy efficiency to be deployable on
an actual mobile device. They proposed an extension based
on network binarization - the process of quantizing network
weights with only one bit.

FPGAs: are configurable integrated circuits that offer the
developer the opportunity program their logic blocks. Han
et al. [11] proposed a compression method that allows a
LSTM-based speech recognition model to run on the Xilinx
XCKU060 FPGA. This is running at 200MHz with a perfor-
mance of 282 GOPS and running the same model has 40
and 11.5 times higher energy requirement on server-grade
CPU and GPU respectively. The flexibility that facilitated the
deployment came at a considerable monetary premium.
Overall, accelerators, both ASIC and FPGA, have demon-

strated their ability to run some form of deep models. This,
however comes with significant strings attached.

ASICs are application bound, meaning that they have to be
re-developed for every architecture design separately. More-
over, creating each new ASIC requires longer development
cycles including sending the chip schematics to foundry - a
process with challenges in itself (e.g. fabrication process). [4]
proposed that this cost can be alleviated by building acceler-
ators for specific layer types as opposed to networks in their
entirety (such as their convolution Origami). This, while true
of marginally different networks (i.e. those that share basic
features) is not true of the field at large. Specifically, the dif-
ferences between state of the art in any given Deep Learning
domain were not due to different organization of broadly
similar layer types. To the contrary, often the development
of the state of the art was driven by the introduction of novel,
very unique, innovations in the types of deployed network
layers - for instance the residual connections in the bottle-
neck layers [12]. Therefore, while the pressure on the chip
development can be partially alleviated, for most part the
costs related to model deployment on ASICs remain large
and network-bound.
FPGAs, are much more flexible in that the hardware can

be re-programmed, potentially even at the inference time.
Consequently, at first glance they are much more viable
and palatable alternative to ACISs. This flexibility, however,
comes at a significantly increased per-unit cost. For many
products this can be prohibitive.

In themodelling space there have been successful attempts
at using reinforcement learning and smart searching to either
compress or design MCU-depolyable architectures. In the
compression space [34] developed a Reinforcement Learning
agent-powered quantization method. This method quantizes
network’s layers such that its hardware simulator-derived
energy and latency metrics are minimized.
NAS: In the architecture design space Banbury et al. [3],

Lin et al. [26] used neural architecture search (NAS) to dis-
cover tiny DL architectures deployable on MCUs. The earlier

work, MCUNet, jointly learns the constrained architecture
and the lightweight inference engine that is to power it. It is
based on a standard NAS design whereby the search space
is first constrained and then explored [26]. Banbury et al.
[3] observe that in the constrained NAS search space of the
MCU-deployable architectures model latency varies linearly
with model operation. That means, they argue, that opera-
tion count can be used as a proxy for on-device latency in the
search process. This, they conclude, lends itself well to the
use of differentiable NAS (DNAS) which optimizes a continu-
ous objective, rather than just searches the search space. This
observation allowed their search algorithm to significantly
improve on the Pareto-frontier achieved by MCUNet. Fur-
ther advancements in the field of NAS-learned architectures
were achieved by expanding the set of objectives the agent
aims to optimize and further refining the search space [23].
These are very promising steps forward in this space. It is
the authors’ hope that the here-presented observations and
measurements can further aid in the construction of these
network construction machines.

Finally there have been attempts at achieving deployment
through alternative means. Operator reordering was shown
to be able to save memory at inference [24]. The aforemen-
tioned MCUNet learned a memory-efficient inference engine
[26]. For a good overview of the broader context in this
space see Warden and Situnayake [36]. And for a strong
development platform for DL on edge devices see TFLM [7].

10 Conclusion and Future Work
We discussed the benefits and difficulties of using micro-
controllers as a target platform for applications powered by
deep neural networks. We described ways to deploy and run
a DNN and explained problems that primarily stem from
the lack of memory and compute resources and a different
memory hierarchy compared to server and mobile platforms.
We believe that our work demonstrates the need for the de-
velopment of new metrics tailored to MCU-type hardware,
which we hope would facilitate the development of new neu-
ral network architectures and compression methods, which
would optimise data movement in the context of the small
fixed memory budgets found on MCUs.
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