
Scaling Knowledge Graph Embedding Models for Link
Prediction

Nasrullah Sheikh
IBM Research Almaden
San Jose, California, US

nasrullah.sheikh@ibm.com

Xiao Qin
IBM Research Almaden
San Jose, California, US
xiao.qin@ibm.com

Berthold Reinwald
IBM Research Almaden
San Jose, California, US
reinwald@us.ibm.com

Chuan Lei
Instacart

San Francisco, California, US
chuan.lei@instacart.com

Abstract
Developing scalable solutions for training Graph Neural Net-
works (GNNs) for link prediction tasks is challenging due
to the inherent data dependencies which entail high com-
putational costs and a huge memory footprint. We propose
a new method for scaling training of knowledge graph em-
bedding models for link prediction to address these chal-
lenges. Towards this end, we propose the following algo-
rithmic strategies: self-sufficient partitions, constraint-based
negative sampling, and edge mini-batch training. The ex-
perimental evaluation shows that our scaling solution for
GNN-based knowledge graph embedding models achieves
a 16x speed up on benchmark datasets while maintaining a
comparable model performance to non-distributed methods
on standard metrics.

CCSConcepts: •Computingmethodologies→Distributed
algorithms; Learning latent representations; Knowledge rep-
resentation and reasoning.

Keywords: Knowledge Graph Embedding, Graph Neural
Networks, Distributed Data Parallel Training

ACM Reference Format:
Nasrullah Sheikh, Xiao Qin, Berthold Reinwald, and Chuan Lei.
2022. Scaling Knowledge Graph Embedding Models for Link Predic-
tion. In 2nd European Workshop on Machine Learning and Systems
(EuroMLSys ’22), April 5–8, 2022, RENNES, France. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3517207.3526974

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMLSys ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9254-9/22/04. . . $15.00
https://doi.org/10.1145/3517207.3526974

1 Introduction
Graphs are widely used to model and manage relational
data [28]. Knowledge graphs (KG), as a prime example of
graphs, model real-world objects, events, and concepts as
well as various relations among them. Representation learn-
ing on large-scale knowledge graphs has been emerging as
a pivotal tool to derive insights from graph structured data
powering a wide range of applications such as data integra-
tion [23, 27, 30] and question answering [1, 8].

KG embedding methods [2, 3, 13, 18, 21, 26, 32] capture the
attributes of entities and structures of relations in KGs, and
project them into a lower dimensional vector space for use
in various downstream tasks such as node classification [21]
and link prediction [2, 18, 21, 22, 29]. Traditional KG embed-
ding methods learn various patterns between the entities
such as symmetric, anti-symmetric and inverse relations. They
mainly focus on the scoring aspect of the problem, which is
to predict the legitimacy between two entities and a partic-
ular relation type. Recently, message passing-based graph
neural networks (GNNs) have been adopted to improve the
expressive power of entity1 embeddings [21]. GNNs capture
the topological features of the entities such as shapes of the
neighborhood sub-graphs which are overlooked by the tra-
ditional KG embedding methods. However, using GNNs to
learning better embeddings comes at the cost of increased
model complexity in terms of number of trainable param-
eters. For example, TransE[2] has 1.5 million parameters
while RGCN[21] has 3.3 million parameters on the FB15k-
237 dataset with an embedding size of 100. The increased
number of trainable parameters leads to an increase in train-
ing time.
Besides model complexity, the size of modern input KGs

has also grown exponentially. The Facebook Graph [4] has
billions of vertices and trillions of edges, and Freebase [6] has
millions of entities and billions of edges. Iterative training on
these large graphsmay not be feasible on single node systems
due to its high computational cost and its high memory
requirements.

1Entity and vertex terms are used interchangeably.

https://orcid.org/0000-0001-7194-9385
https://doi.org/10.1145/3517207.3526974
https://doi.org/10.1145/3517207.3526974

EuroMLSys ’22, April 5–8, 2022, RENNES, France Nasrullah Sheikh, et al.

1-Hop 2-Hop 3-Hop
0

1

2

3

4

5

6

7
Av

g.
 n

um
be

r o
f n

od
es

 (L
og

 sc
al

e)

Figure 1. Average number of vertices required to compute
the embedding of a vertex in ogbl-citation2 dataset.

Various distributed training frameworks [12, 34, 35] have
been proposed to scale KG embedding methods. However,
these frameworks only apply to the traditional models with
mutually independent training triplets [2, 29]. The input data
can be partitioned easily, and the models are subsequently
trained in parallel. These frameworks cannot be used for
training GNN-based KG embedding models [18, 21] due to
the inherent dependencies in the neighborhood information
(usually beyond 𝑛-hop with 𝑛 ≥ 2). Figure 1 shows that with
larger and deeper neighborhoods, the average number of ver-
tices required to compute an embedding rises significantly,
which consequently leads to an increase in the number of
model parameters with more computation cost and higher
memory footprint. We further observe that the skewed dis-
tribution of vertex degrees in enterprise knowledge graphs
leads to vertex dependencies up to tens of thousands of ver-
tices. These dependencies make scaling GNN-based KG em-
bedding models extremely challenging.
Several distributed GNN training frameworks have been

proposed primarily for node classification [14, 33]. Graph
partitioning followed by distributed training are commonly
explored by these solutions. While a simple partitioning
strategy is to partition the graph using either vertex-cut
or edge-cut-based methods, and access required dependent
vertices in other partitions remotely during training. How-
ever, the increase of the number of GNN layers, i.e., the
number of hops, increases the number of messages with
neighborhood information that are exchanged across par-
titions, which leads to a significant communication over-
head. It is in contrast to distributed neural network training
on non-graph structured datasets such as images, which
only incurs communication overhead due to sharing of gra-
dients. The exchange of neighborhood information is the
main bottleneck in scaling GNN training. The challenge is
to generate optimized graph partitions that reduce the re-
quired exchange of neighborhood information. Moreover,
partitions generated from larger graphs are of considerable
size and cannot fit into the smaller memory of a GPU for
hardware acceleration. DistDGL [33] introduces an edge-cut-
based partitioning method using METIS [10], and employs a

mini-batch training approach for node classification. Edge-
cut-based methods produce partitions with edge replication
in multiple partitions, which may lead to skewed partition
sizes. The larger partitions will be the stragglers in the train-
ing process. We observe that partitions produced by METIS
followed by neighborhood expansion for link prediction are
approximately 33% larger than the partitions produced by
vertex-cut based methods [19], which increases the training
time by approximately 21% and makes the approach sub
optimal for link prediction.

In this paper, we propose a distributed training approach
for GNN-based knowledge graph embedding models for link
prediction. We introduce a vertex-cut method to partition
the graph and then expand the partitions to include 𝑛-hop
neighbors, where 𝑛 is determined by the number of convo-
lutional layers of the GNN model. The partitions produced
are self-sufficient and thus do not require any exchange of
neighborhood information during distributed training at the
expense of data replication and redundant computation. We
generate negative samples within the partitions to further
reduce the communication overhead. Using a data parallel
approach, we train the model in a cluster where each trainer
process trains on a partition using an edge mini-batch train-
ing strategy. Our main contributions are as follows.

• To the best of our knowledge, we propose the first ar-
chitecture for distributed GNN-based knowledge graph
embedding model training for link prediction. We also in-
troduce edge mini-batch training which allows us to train
on large partitions.
• We employ a vertex-cut-based partitioning strategy that
partitions the graph into sets of disjoint edges, which we
then expand to self-contained graph partitions by repli-
cating 𝑛-hop dependent vertices and edges required for
message passing.
• We exploit the locally closed world assumption [2, 24]
and employ a constraint based negative sampling strategy
to sample negative samples. The negative samples are
drawn from within the partition to avoid communication
overhead.
• We experimentally evaluated the performance of our pro-
posed system on two public datasets. Our approach achieves
a speedup of 16x with 8 trainers without any loss on the
measured metrics.

The rest of the paper is organized as follows: Section 2 de-
scribes our system architecture. In Section 3, we describe the
system setup for evaluation, followed by a discussion of the
results. Finally, we conclude in Section 4.

2 Distributed Knowledge Graph Training
In this section, we describe our distributed learning process
of GNN-based KG embedding models on a cluster of compute
nodes with multi CPUs/GPUs.

Scaling Knowledge Graph Embedding Models for Link Prediction EuroMLSys ’22, April 5–8, 2022, RENNES, France

Knowledge Graph

Vertex-cut Partitioner &
neighborhood expansion

Partition 1

Embedding
Model

Negative
Sampler

All Reduce

...

Communication Network

Node 1

Node 2 Node P

Edge mini-batch

Node P

Partition P

Embedding
Model

Negative
Sampler

All Reduce

Edge mini-batch

Partition 2

Embedding
Model

Negative
Sampler

All Reduce

Edge mini-batch

Node 2

Figure 2. Architecture of our distributed GNN training ap-
proach for link prediction.

2.1 System Overview
The architecture2 of our proposed approach is shown in Fig-
ure 2. Our proposed architecture is designed to run on a dis-
tributed CPU/GPU cluster. Each compute node (CPU/GPU)
in a cluster runs a replica of the model and is responsible for
training on a partition of data using synchronous gradient
descent (SGD). Each training process computes the gradients
of the model on an edge mini-batch, shares and averages
the gradients, and updates the local model. Specifically, our
distributed KG embedding learning involves the following
steps:
1. Partition the graph into 𝑃 disjoint subsets, and then ex-

pand each partition to include 𝑛-hops of neighbors of
each vertex in the partition, where 𝑛 is determined by the
number of graph convolutional layers in the embedding
model. The number of partitions is equal to the number
of compute nodes available. We refer to compute node
as a processing unit (CPU/GPU). Graph partitions along
with the required features of vertices are assigned to a
compute node.

2. One training process/worker is launched per compute
node. During each epoch, each training process samples 𝑠
negative samples for each positive sample in its partition.

2For the purpose of the overview, we assume one compute node runs only
one worker.

The number of training examples in a partition is 𝑝×(𝑠+1),
where 𝑝 is the number of positive samples in a partition.

3. Each training process implements edge mini batching for
training. A batch of 𝑏 edges (positive and negative) in a
partition is sampled. Edge mini-batch ensures that the
embedding of all entities required for scoring the edges
in the edge mini-batch is computed.

4. After the formation of an edge mini-batch, a computa-
tional graph is generated for message passing in the graph
convolutional layers. We obtain the loss, and compute the
gradients. The gradients are shared using AllReduce, and
the model is optimized based on the averaged gradients.
Our proposed approach can be applied to any graph em-
bedding model which uses a message passing approach
for graph convolution.
The enumerated steps in the overview are described in

detail in the following subsections.

2.2 Graph Partitioning
Partitioning the input graph is an important preprocessing
step in distributed training. The quality of partitions have
a direct impact on the learned model quality and on scala-
bility. We apply a two-phase approach by first partitioning
the graph, and then performing neighborhood expansion to
make the partitions self sufficient.

0

2

8

7

10

1

9 3564

2 2

17
0 1 0 7

0 2

87

10

1

4

9

3

5

6

0

2

8

7

10

1

9 3564

2 2

17
0 1 0 7

4 6
5 3

Edge Cut Partitions

Partition 1 Partition 2 Partition 3

Vertex Cut Partitions

Partition 1 Partition 2 Partition 3

Replicated Vertices Replicated Edges Expanded nodes/edges

(a) Original Graph

(b)

(c)

Figure 3. Graph partitioning: edge cut and vertex cut parti-
tions along with their neighborhood expansion.

EuroMLSys ’22, April 5–8, 2022, RENNES, France Nasrullah Sheikh, et al.

2.2.1 Partitioning. Using edge-cut partitioning methods
such as Metis[10], some positive edges are replicated in mul-
tiple partitions as shown in Fig 3(b) (e.g., Edges (0, 2), (1, 2)
are present in all partitions). Hence, the training on the repli-
cated edges is repeated in multiple partitions which incurs
additional computational cost, and may also negatively im-
pact the learning process. Moreover, edge-cut partitioning is
shown to be ineffective in balancing the workload of large
real-world graphs [7, 31]. This load imbalance leads to a sub-
stantial stalling of work which increases the overall training
time.
Vertex cut partitioning [7, 20, 31] divides the edges into

disjoint partitions and produces balanced partitions by mini-
mizing the vertex replication. We refer to edges in a partition
as core edges, the vertices where the graph is partitioned as
replicated-vertices, and other vertices as core-vertices. The set
of core edges form the positive edges for training. The disjoint
partitions produced by vertex-cut partitions are more suited
for the problem of link-prediction because the produced par-
titions are balanced and neighborhood expansion does not
lead to graph explosion (discussed in detail in 2.2.2).

2.2.2 NeighborhoodExpansion. Link prediction requires
an updated embeddings of the vertices of an edge to calculate
the score that determines the validity of an edge. To com-
pute an embedding of a vertex, a 𝑛 layer GNN requires to
have the features from the 𝑛-hop neighbors. Due to partition-
ing, some edges will have partial neighborhood information
available within the partition, and the other required infor-
mation could be present in different partitions. We call these
edges boundary-edges. One possible way is to fetch this in-
formation during training. But this would incur recurring
communication cost resulting in extensive training time. We
propose to make the partitions independent by including
the missing partial neighborhood information of boundary-
edges in each partition. We call this process neighborhood
expansion, and it is done after creating the partitions. Neigh-
borhood expansion eliminates the communication cost of
fetching data from other partitions, but at the expense of
increasing the size of each partition. We refer to the added
vertices and edges as support-vertices and support-edges re-
spectively. Neighborhood expansion of the graph is shown
in Figures 3(b) and (c). Figure 3(b) demonstrates that edge-
cut partitions explode during neighborhood expansion thus
limiting its usability.

2.3 Training
Each compute node will have a replica of the graph embed-
ding model, and will work on a single graph partition. The
partition assigned to a compute node remains fixed during
the entire training process. We generate a set of negative
edges, and the combined set of negative edges and core edges
form the set of training edges.We employ an edgemini-batch

0 2

7 14 6

Figure 4. Edge Mini-batch

training approach to train the KG embedding methods. The
distributed training process is shown in Algorithm 1.

2.3.1 Negative Sampling. In KG embedding methods,
negative samplers generally exploit the closed world hy-
pothesis which considers any edge not explicitly present in
the graph as a negative example. Most of the negative sam-
ples generated by this result are easy negative examples [11].
The error gradients from these samples are very small, hence
do not help in learning a good model. The negative samples
space 𝑂 (𝑁 2) is far larger than the positive samples space,
and thus it is more prone to generate easy negative samples.

We propose a constraint-based negative sampling approach.
Our proposed approach considers the core edges in a par-
tition as the positive samples, and each partition is inde-
pendent of other partitions. We employ a constraint that
generates the negative samples from the core vertices of the
partition based on the local world hypothesis. This constraint
provides two advantages, 1) the embeddings of entities in
negative samples are not stale, and 2) it avoids the commu-
nication cost of querying other partitions and fetching data.
This also reduces the sample space of negative samples as
𝑁𝑖 << 𝑁 , where 𝑁𝑖 number of vertices in the 𝑖-th partition
and 𝑁 is the total number of vertices in a KG, respectively.
This helps in reducing the problem of generating easy nega-
tive samples.

2.3.2 Edge Mini-Batch. GNN training on a large dataset
for node classification is done by mini-batching. In mini-
batching, a set of vertices is randomly selected, and a com-
putational sub-graph is sampled for training to obtain the
embeddings of the selected vertices. Using a vertex sampling
strategy for link prediction is not trivial as it does not guar-
antee that both vertices of an edge are in the sample. For this
reason, we are proposing to use edge mini-batching for link
prediction. In edge mini-batching, a batch of edges is sam-
pled, and the vertices in the batch form a vertex set. Then, a
computational graph for message passing is created which
captures the 𝑛-hop dependencies of the sampled edge batch.
The embeddings are learned for the vertices in the vertex
set. Figure 4 shows a 1-hop computational graph for an edge
(0, 2), and message passing is done on this graph to learn
the embeddings of vertex 0 and 2.

2.3.3 Model Training. For each edge mini-batch training,
we generate a computational graph from the partitioned data
using the vertices in the graph. The computational graph

Scaling Knowledge Graph Embedding Models for Link Prediction EuroMLSys ’22, April 5–8, 2022, RENNES, France

is used for generating embeddings for the vertices in the
edge mini-batch using the graph convolutional layers of the
KG embedding model. This constitutes the forward pass of
the training. In the next step, a loss is calculated for the set
of edges in the mini-batch which subsequently generates
gradients. The gradients are shared among the training pro-
cesses using the AllReduce communication primitive. Once
the gradients are shared and averaged, the training processes
update their local model.

Algorithm 1: Training Process on each compute
node
Input: GNNmodel, optimizer, features, gPartition,

epochs
1 𝑒𝑝𝑜𝑐ℎ ← 1
2 while 𝑒𝑝𝑜𝑐ℎ ≤ 𝑒𝑝𝑜𝑐ℎ𝑠 do
3 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐸𝑑𝑔𝑒𝑠 ← 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (𝑔𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)
4 while

𝑏𝑎𝑡𝑐ℎ ∈ 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐸𝑑𝑔𝑒𝑠, 𝑔𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛) do
5 𝑐𝑔𝑟𝑎𝑝ℎ ←

𝑔𝑒𝑡𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑎𝑝ℎ(𝑏𝑎𝑡𝑐ℎ, 𝑔𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)
6 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔← 𝐺𝑁𝑁𝑚𝑜𝑑𝑒𝑙 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑐𝑔𝑟𝑎𝑝ℎ)
7 𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔, 𝑏𝑎𝑡𝑐ℎ)
8 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (𝑙𝑜𝑠𝑠) ; /* Gradients are computed &

shared */

9 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 .𝑠𝑡𝑒𝑝 () ; /* The model is updated */

10 end
11 𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1
12 end

3 Experimental Evaluation
3.1 System Setup
We ran our experiments on a cluster of 4 machines. Each
node has two Intel Xeon 6138 CPUs @ 2.00 GHz (80 virtual
cores), 726 GB DDR4 DRAM @ 2666 MT/s, 40 Gb Ethernet,
2 P100 GPUs, and running CentOS Linux 7.9.

We use PyTorch Geometric 1.7.2 [5] as our graph embed-
ding implementation framework, PyTorch 1.9.0 [17] as the
deep learning backend framework, and PyTorch Distributed-
DataParallel for distributed training with NCCL [16] as the
backend for collective communication operations for GPUs
and AllReduce for gradient sharing.

3.2 Datasets
We experimented with two public benchmark datasets used
for link prediction in KGs. The dataset statistics are summa-
rized in Table 1. FB15k-237 [2] is a subset of FreeBase [6]
which contains facts extracted from Wikipedia. It consists
of named entities and edges which determine the type of
relation between entities. The dataset is a benchmark for
evaluating KG embedding methods for link prediction. ogbl-
citation2 [9] is a citation graph extracted from Microsoft

Academic Graph (MAG) [25]. Each vertex is associated with a
128-dimensional feature vector created using Word2Vec[15]
on paper title and abstract.

Table 1. Dataset statistics.

Dataset FB15k-237 ogbl-citation2

Entities 14,541 2,927,963
Relations 237 1
Features - 128

Train edges 272,115 30,387,995
Valid edges 17,535 86,596
Test edges 20,466 86,596

We use vertex-cut based partitioning (KaHIP [19, 20]) to
obtain disjoint subsets of training edges followed by neigh-
borhood expansion to include all 𝑛-hop neighbors.

3.3 Hyperparameters
We used a two layer RGCN [21] model as a KG embedding
method for link prediction and trained it in a distributed
setting. For FB15k-237 dataset, we used the same hyperpa-
rameters as described in [21] except the embedding size. We
found out that an embedding size of 75 dimensions produces
comparable results with the original setting. As the dataset is
small, we trained it using full edge batch. For ogbl-citation2,
we chose an embedding size of 32, learning rate 0.01, dropout
0.2, 1 negative sample per positive sample, and basis decom-
position with two basis functions for regularization. For
fairness of comparison, we used these hyperparameters in
all training scenarios including non-distributed training.

3.4 Distributed Training Results
In this section, we present the experimental results of our
proposed approach. We compare our proposed distributed
training with a non-distributed training setup (1 Trainer).
The non-distributed training process trains on the full graph
data.

3.4.1 Accuracy. We compare the performance of our dis-
tributed training approach with the non-distributed train-
ing setting. In case of distributed training, the number of
trainers varies from 2 to 8 trainers with each compute node
running two trainers. Since, FB15k-237 is a small dataset,
we performed full batch training. In case of ogbl-citation2,
we performed mini-batch training, and the mini-batch size
is approximately 118k. For FB15k-237 dataset, we follow
the filtered settings for evaluations. Since the number of
edges for dataset ogbl-citation2 is very large, the dataset has
provided 1000 candidate negative target vertices for each
test and validation edge for evaluation. We trained RGCN
models on the two datasets, selected the best models and
report the results on the test data. Ogbl-citation2 reached

EuroMLSys ’22, April 5–8, 2022, RENNES, France Nasrullah Sheikh, et al.

Table 2. MRR, Hits@1 and epoch time/speedup of RGCN non-distributed and distributed training on 2 datasets.

#Trainers FB15k-237 ogbl-citation2
MRR Hits@1 Ep. Time(s)/speedup MRR Hits@1 Ep. Time(m)/speedup

1 0.22 0.138 5.09/- 0.620 0.494 112/-

2 0.22 0.136 4.03/1.25x 0.621 0.492 44/2.54
4 0.21 0.130 3.62/1.40x 0.620 0.493 16/7x
8 0.21 0.124 3.54/1.43x 0.617 0.494 7/16x

maximum accuracy within 100 epochs. As shown in Table 2,
the results (MRR and Hits@k) on benchmark dataset FB15k-
237 shows that our distributed training approach produces
achieves comparable MRR and Hits@1 scores to the non-
distributed setting. The results are also comparable to the
numbers reported in the original RGCN paper. For the larger
dataset, ogbl-citation2, we observe a similar trend, i.e our
distributed training approach achieves comparable results to
non-distributed training at a speedup of 16×. Furthermore,
the results also verify that our constraint-based negative
sampling strategy is effective in training as no deterioration
of the scoring metrics is observed.

3.4.2 Scalability. We used the same settings as described
in Section 3.4.1 for evaluating the scalability of our approach.
We did not apply any sampling strategy (vertex drop or edge
drop) during training. As shown in Table 2, the speed up
for FB15k-237 dataset is lower than linear. The size of the
partitions after neighborhood expansion is approximately
equal to the original dataset with a replication factor for
8 partitions of around 7, which leads to a lot of redundant
computations. For ogbl-citation2, we achieved a speedup
of approximately 16x with 8 trainers compared to 1 trainer.
The replication factor for 8 partitions after neighborhood
expansion is low, which means less redundant computation.

We performed an in-depth analysis of the running times of
the major computational components described in lines 4-10
of Algorithm 1 (getComputeGraph,GNNmodel, loss+backward+step)
in order to quantify the contributions of these components
to the overall speedup. Figure 5(a,b) shows the average epoch
time and average running time of different components in a
batch. The component, getComputeGraph is a very compute
intensive operation as it depends on the partition size. The
function returns a computational graph for an edge mini-
batch. It is an essential function as it enables us to train on
large graphs. The running time of this operation decreases
as we increase the number of trainers from 1 to 8, because
the size of the partitions decreases. In the case of 8 partitions
for ogbl-citation2, the size of each partition decreases by one-
third with respect to the full graph. The GNNmodel produces
the embeddings of the vertices in an edge mini-batch. Its
running time in case of multiple trainers is slightly higher
than for 1 trainer, because we run 2 trainers per machine

which share the same resources. The running time of the
third block of operations (loss+backward+step) increases as
we increase the number of trainers, because of the increase
in communication cost for gradient sharing. The overall im-
pact of these components on training time varies because
the number of batches (forward pass and backward pass) per
epoch decreases from 256 to 32 for 1 trainer and 8 trainers
respectively.

1 Trainer
 256 batches

2 Trainers
 128 batches

4 Trainers
 64 batches

8 Trainers
 32 batches

0

20

40

60

80

100

Av
er

ag
e

Ep
oc

h
Ti

m
e

(in
 m

in
ut

es
)

112

44

16
7

(a)

1 Trainer
 256 batches

2 Trainers
 128 batches

4 Trainers
 64 batches

8 Trainers
 32 batches

0

5

10

15

20

25

Av
er

ag
e

Ba
tc

h
Ti

m
e

(in
 se

co
nd

s)
(b)

getComputeGraph
GNNmodel
Loss+Backward+step

ogbl-citation2 Dataset

Figure 5. (a) Average running time per epoch; (b) aver-
age running time of components in batch for ogbl-citation2
dataset

4 Conclusion
We proposed various algorithmic approaches for distributed
training of GNN-based knowledge graph embedding models.
Our approach is agnostic to the used knowledge graph em-
bedding model. We used a vertex cut partitioning approach
along with neighborhood expansion method to make the par-
titions self-sufficient such that no data is transferred across
partitions during training. We introduced edge mini-batch
training for large partitions that enables us to train on large
partitions with limited system memory. Moreover, we ap-
plied constraint-based negative sampling to exploit the local
partitions to generate the negative samples for training. Our
experimental evaluation shows a super linear speedup on
a cluster of machines without sacrificing model accuracy,
and our approach converges faster than non-distributing
training.

Scaling Knowledge Graph Embedding Models for Link Prediction EuroMLSys ’22, April 5–8, 2022, RENNES, France

References
[1] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston.

2015. Large-scale Simple Question Answering with Memory Networks.
arXiv:1506.02075

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, JasonWeston,
and Oksana Yakhnenko. 2013. Translating Embeddings for Modeling
Multi-Relational Data. In Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems (Lake Tahoe, Nevada)
(NIPS’13). Red Hook, NY, USA, 2787–2795.

[3] Liwei Cai and William Yang Wang. 2017. KBGAN: Adversarial Learn-
ing for Knowledge Graph Embeddings. CoRR abs/1711.04071 (2017).
arXiv:1711.04071 http://arxiv.org/abs/1711.04071

[4] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. 2015. One Trillion Edges: Graph Processing
at Facebook-Scale. Proc. VLDB Endow. 8, 12 (2015), 1804–1815. https:
//doi.org/10.14778/2824032.2824077

[5] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLRWorkshop on Representation
Learning on Graphs and Manifolds.

[6] Google. 2013. Freebase Data Dumps. https://developers.google.com/
freebase.

[7] Masatoshi Hanai, Toyotaro Suzumura, Wen Jun Tan, Elvis Liu, Geor-
gios Theodoropoulos, and Wentong Cai. 2019. Distributed Edge Par-
titioning for Trillion-Edge Graphs. Proc. VLDB Endow. 12, 13 (Sept.
2019), 2379–2392.

[8] Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua
Wu, and Jun Zhao. 2017. An End-to-End Model for Question Answer-
ing over Knowledge Base with Cross-Attention Combining Global
Knowledge. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational
Linguistics, 221–231. https://doi.org/10.18653/v1/P17-1021

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph
Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687 (2020).

[10] George Karypis and Vipin Kumar. 1998. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci.
Comput. 20, 1 (Dec. 1998).

[11] Bhushan Kotnis and Vivi Nastase. 2017. Analysis of the Impact of
Negative Sampling on Link Prediction in Knowledge Graphs. CoRR
abs/1708.06816 (2017).

[12] Adam Lerer, LedellWu, Jiajun Shen, Timothée Lacroix, LucaWehrstedt,
Abhijit Bose, and Alex Peysakhovich. 2019. Pytorch-BigGraph: A
Large Scale Graph Embedding System. In Proc. of Machine Learning
and Systems 2019, MLSys 2019.

[13] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu.
2015. Learning Entity and Relation Embeddings for Knowledge Graph
Completion. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (Austin, Texas) (AAAI’15). AAAI Press.

[14] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network
Computation on Large Graphs. In 2019 USENIX Annual Technical Con-
ference.

[15] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Distributed Representations of Words and Phrases and
their Compositionality. CoRR abs/1310.4546 (2013). arXiv:1310.4546
http://arxiv.org/abs/1310.4546

[16] NVIDIA. 2017. Optimized primitives for inter-GPU communication.
https://github.com/NVIDIA/nccl.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[18] Xiao Qin, Nasrullah Sheikh, Berthold Reinwald, and Lingfei Wu. 2021.
Relation-aware Graph Attention Model with Adaptive Self-adversarial
Training. Proceedings of the AAAI Conference on Artificial Intelligence
35, 11 (May 2021), 9368–9376.

[19] Peter Sanders and Christian Schulz. 2013. Think Locally, Act Glob-
ally: Highly Balanced Graph Partitioning. In Proceedings of the 12th
International Symposium on Experimental Algorithms (SEA’13) (LNCS,
Vol. 7933). Springer, 164–175.

[20] Sebastian Schlag, Christian Schulz, Daniel Seemaier, and Darren Strash.
2018. Scalable Edge Partitioning. arXiv:1808.06411 [cs.DS]

[21] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling. 2018. Modeling Rela-
tional Data with Graph Convolutional Networks. In The Semantic Web
- 15th International Conference, ESWC 2018, Heraklion, Crete, Greece,
June 3-7, 2018, Proceedings. Springer.

[22] Nasrullah Sheikh, Xiao Qin, Berthold Reinwald, Christoph Miksovic,
Thomas Gschwind, and Paolo Scotton. 2021. Knowledge Graph Em-
bedding using Graph Convolutional Networks with Relation-Aware
Attention. CoRR abs/2102.07200 (2021). arXiv:2102.07200 https:
//arxiv.org/abs/2102.07200

[23] Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao
Chen, Farahnaz Akrami, and Chengkai Li. 2020. A Benchmarking
Study of Embedding-Based Entity Alignment for Knowledge Graphs.
Proc. VLDB Endow. 13, 12 (July 2020), 2326–2340. https://doi.org/10.
14778/3407790.3407828

[24] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. 2016. Complex Embeddings for Simple Link
Prediction. In Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48 (ICML’16).

[25] Kuansan Wang, Iris Shen, Charles Huang, Chieh-Han Wu, Yuxiao
Dong, and Anshul Kanakia. 2020. Microsoft Academic Graph: when ex-
perts are not enough. Quantitative Science Studies 1, 1 (February 2020),
396–413. https://www.microsoft.com/en-us/research/publication/
microsoft-academic-graph-when-experts-are-not-enough/

[26] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge
Graph Embedding: A Survey of Approaches and Applications. IEEE
Transactions on Knowledge and Data Engineering 29, 12 (2017), 2724–
2743.

[27] ZhichunWang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-
lingual Knowledge Graph Alignment via Graph Convolutional Net-
works. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguis-
tics, Brussels, Belgium, 349–357.

[28] Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Desh-
pande. 2015. Graphgen: Exploring interesting graphs in relational data.
Proceedings of the VLDB Endowment 8, 12 (2015), 2032–2035.

[29] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
2015. Embedding Entities and Relations for Learning and Inference in
Knowledge Bases. In 3rd Int. Conference on Learning Representations,
ICLR San Diego, CA, USA.

[30] Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang.
2019. A Vectorized Relational Graph Convolutional Network for Multi-
Relational Network Alignment. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (Macao, China) (IJCAI’19).
AAAI Press, 4135–4141.

https://arxiv.org/abs/1506.02075
https://arxiv.org/abs/1711.04071
http://arxiv.org/abs/1711.04071
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://developers.google.com/freebase
https://developers.google.com/freebase
https://doi.org/10.18653/v1/P17-1021
https://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://github.com/NVIDIA/nccl
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1808.06411
https://arxiv.org/abs/2102.07200
https://arxiv.org/abs/2102.07200
https://arxiv.org/abs/2102.07200
https://doi.org/10.14778/3407790.3407828
https://doi.org/10.14778/3407790.3407828
https://www.microsoft.com/en-us/research/publication/microsoft-academic-graph-when-experts-are-not-enough/
https://www.microsoft.com/en-us/research/publication/microsoft-academic-graph-when-experts-are-not-enough/

EuroMLSys ’22, April 5–8, 2022, RENNES, France Nasrullah Sheikh, et al.

[31] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li.
2017. Graph Edge Partitioning via Neighborhood Heuristic. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Association for Computing Machinery,
10 pages. https://doi.org/10.1145/3097983.3098033

[32] Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen,
Wei Zhang, and Huajun Chen. 2019. Long-tail Relation Extraction
via Knowledge Graph Embeddings and Graph Convolution Networks.
In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. 3016–3025.

[33] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. 2020. DistDGL:

Distributed Graph Neural Network Training for Billion-Scale Graphs.
In 10th IEEE/ACM Workshop on Irregular Applications: Architectures
and Algorithms, IA3 2020, Atlanta, GA, USA, November 11, 2020. IEEE,
36–44. https://doi.org/10.1109/IA351965.2020.00011

[34] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong,
Hao Xiong, Zheng Zhang, and George Karypis. 2020. DGL-KE: Train-
ing Knowledge Graph Embeddings at Scale. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR ’20). Association for Computing Machinery,
New York, NY, USA, 739–748.

[35] Zhaocheng Zhu, Shizhen Xu,MengQu, and Jian Tang. 2019. GraphVite:
A High-Performance CPU-GPU Hybrid System for Node Embedding.
In The World Wide Web Conference. ACM, 2494–2504.

https://doi.org/10.1145/3097983.3098033
https://doi.org/10.1109/IA351965.2020.00011

	Abstract
	1 Introduction
	2 Distributed Knowledge Graph Training
	2.1 System Overview
	2.2 Graph Partitioning
	2.3 Training

	3 Experimental Evaluation
	3.1 System Setup
	3.2 Datasets
	3.3 Hyperparameters
	3.4 Distributed Training Results

	4 Conclusion
	References

